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NOTATION 

The following symbols will be used throughout this manuscript. 

N Initial budget of devices Page 1 

n An arbitrary budget of devices 6, 11 

Pj Probability of failure in state j 5,44 

50 Initial probability of design having state 2 failure 5 

probability 

51 Posterior probability design is in state 2 after i 5 

developmental steps 

u Probability of a successful redesign 5 

n,- Design failure probability after i step development 6 

process 

s* Smallest s,- for which no testing is reconmiended 6 

Xi (0 — 1) binary value of ith test, Xi = 1 if and only 6 

if ith test fails 

r(s) Probability that a system of the current design is 7 

effective if the probability that the design state is 

2 is s 
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Tjxis) Function updating the probability that the design, 7, 10 

with prior state 2 probability of 5, is in state 2 

after a test which gave result x 

14(5) Optimal expected number of good systems from 8, 11 

an n-system budget which has prior state 2 design 

probability of s 

d Rational design cost, d = pjq devices 9, 19 

6(s) Probability the design reliability is in state 2 after 10 

a redesign having prior state 2 probability of s 

/„_i(s) r(s)K-i('/o(s)) + (1 - r(s))K-i(»7i(s)), "test" 11 

function candidate in V„{s) 

Gn Vn{so)/r{so), growth in stockpile due to optimal 26 

development policy 

C„ DevCost/n, cost of optimal policy 26 

Uj Probability that a potentially harmful redesign 31 

performed in state j results in state 2 design 

reliability 

^2(-s) Probability design rehability is in state 2 after a 35 

potentially regressive redesign having prior state 

2 probability of s 

p Vector containing multiple-state failure 44 

probabilities 

s Vector containing probabilities that design has re- 44 

liability in state i 
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a Vector of positive weights - initial distribution of 45 

multiple-state design reliability 

(X, Y) Development process state vector 45 

s,(X, F) Probability design reliability is in state i, given 46 

development vector {X ,  Y )  

r { X , Y )  Multiple-state design reliability, given develop- 46 

ment vector { X ,  Y )  

h o { X ^ Y )  Redesign update functions for X  and Y  compo- 46 

h x { X ,  Y )  nents of development vector, respectively 

Vn{X,Y)  Optimal expected number of good systems from 47 

an n-system budget which has development state 

vec to r  {X ,  y )  

Wl(X^Y) Maximum expected nimiber of effective systems 55 

in a potentially n-device development program al­

lowing at most j decisions, with development state 

{X,Y), a "look ahead" rule 

S„, D„ Number of look ahead steps from "Step" and "De- 56 

vice" look ahead rules, respectively 
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ABSTRACT 

This dissertation considers two developmental testing models for one-shot sys­

tems, non-repairable devices that are destroyed by testing or first normal use (for 

example, rocket engines) when there is the potential for reliability growth through 

redesign. Given a limited budget and fixed cost per redesign, we wish to determine 

the sequence of redesigns ajid tests so that the expected number of effective systems 

in an ultimate stockpile of systems of the final design is maximized. We develop 

mathematical models and ajialyses which describe the optimal testing policies for 

this sequential decision problem. Further, we present properties of the models which, 

in some cases, make the computation of solutions feasible. We begin with the analysis 

of a two-state reliability model. Besides determining the effect of redesign costs on 

the optimal strategy, we show how the possibility of haimful redesigns can be incor­

porated into the model. We explore how this model behaves when even a "poor" 

reliability design is highly reliable but extremely high reliability is desired. A pri­

mary contribution of the thesis is an analysis of the general multiple-state (fc-state) 

reliability model and, most interestingly, the presentation of a 2-variable formulation 

by which some fc-state models can be analyzed. Under some restrictions, we analyze 

and compute solutions to this latter model on a lattice. 
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CHAPTER 1. INTRODUCTION 

This dissertation presents two models for the analysis of developmental test 

programs for one-shot systems when there is potential for reliability growth through 

system redesign. One-shot systems are non-repairable and are destroyed upon first 

use; testing constitutes use. One example of such a device is a rocket engine. 

We suppose there is a budget sufficient to construct N one-shot systems. Con­

sidering the budget size and current estimate of design reliability, we would like to 

determine if reliability growth can be achieved through a system redesign. Any ac­

tivity (redesigning, testing, or building) exacts a price from the current budget. We 

seek a plan which will yield high device reliability and will simultaneously make the 

final number of devices in the stockpile as large as possible. More precisely, we wish 

to design and develop the systems so that the expected number of effective systems 

built at the end of the development process is maximized. Roughly speaking, the 

development period of testing/redesign ceases and we "build" using the remaining 

budget when the expected number of acceptable systems using the current reliability 

estimates is, by some measure, large. 

Given the budget, we build using the present design when it appears that device 

effectiveness (reliability) cannot be improved through further Research and Develop­

ment. 
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Our objective is to identify good policies dictating which development activity 

should occur next. The policies will consider the current budget, the current estimate 

of the system reliability, the likelihood of improving reliability through redesign or 

improving the estimate of the reliability via testing, and the costs associated with any 

such efForts. We seek methods for computing the optimal strategies for this sequential 

decision problem. 

Such policies are necessary for efficient development of complex systems under 

a fixed budget. The policies are given in partial response to the question posed by 

Pentagon Science Advisor Dr. Ernest Seglie [21], "How Much Testing is Enough?" 

We consider two models where reliability growth may occur after purchasing a 

system redesign. In both models, after each step in the development process, one 

chooses to redesign, test a device, or cease the development process and "build" — 

majiufacture devices according to the current design. 

The first model we consider generalizes one used by Huang in her Ph.D. disser­

tation [12]. The Huang model supposes that the (tmknown) design reliability is in 

one of two possible states and that testing gives a binary (success/failure) response. 

Reliability growth is achieved only if a failed test triggers a redesign that proves 

successful. Once the "good" reliability state is reached, it cannot be left. 

The two-state model was a necessary first step in developing useful testing strate­

gies. However, the model is unrealistic in its simplicity: the redesign process is as­

sumed to be free or of negligible cost; redesigns can not haim the current reliability; 

redesigns are allowed only after failed tests; and the expected reliability can be quite 

different from the actual reliability. Further, in a long, complex development pro­

cess it seems reasonable that design reliability would change in steps or stages and 
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not simply from "bad" to "good." Finally, given the extremely high reliability de­

manded of today's rocket motors and military weapons systems, waiting to witness 

a test failure is often not practically feasible. Ekstrom and Allred [10] point out 

that approximately 2300 successful tests, in a row, would be required to demonstrate 

reliability of 0.999 at a 90% confidence level. 

The research described here addresses these issues. We modify Huang's model to 

reflect four additional features of typical development processes. First, we incorporate 

design costs into the model. Second, we remove the stipulation that redesigns caji 

only follow a failed test. Next, by separating the testing and design activities, testing 

is given its proper role of providing information on current reliability while redesign 

fills its role of changing reliability. Finally, we model the possibility of reliability 

degrading redesigns, i.e., redesigns which may harm the current design reliability are 

considered. 

We then propose a new model to describe a development process where the design 

reliability is in one of k states. The model is very general and the work described 

here is only a beginning in understanding its utility and power. 

The next chapter is a literature review. Chapter 3 discusses the modifications to 

Huang's binary model we have studied. Chapter 4 is an introduction to the multiple-

state reliability model and Chapter 5 contains the solutions we have developed for 

the multiple-state model. The last chapter gives conclusions and outlines questions 

for further study. The Appendix gives pseudo-code descriptions of the computer 

programs used to produce the numeric examples contained in this dissertation. 
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CHAPTER 2. LITERATURE REVIEW 

While reliability growth has received substantial attention, most of the models in 

the literature describe how design reliability typically changes with time (presumably 

in response to some unspecified design improvement activities occurring behind the 

scenes according to some imspecified process) and not how it changes specifically 

in response to the redesign/testing development process. For example, Pollock [18], 

Bell [2], Duane [8], Dwyer [9], Faid and Dietrich [11], and Martz and Waller [17] 

have all discussed such models. A model for reliability growth leading to maximum 

likelihood estimates for failure rates is given by Barlow and Scheuer [1]. Ekstrom 

and Allred [10] discuss a design and demonstration process which seeks to ensure 

a prescribed reliability at minimum cost. Their S.A.F.E.R."" (Statistical Approach 

For Engineering Reliability) methodology is a six step, systemic approach to verifying 

reliability at a specified confidence level. The existing discussions of reliability growth 

provide little guidance for choosing developmental strategies. 

The developmental model that is currently used by some developers and suppliers 

to the United States military was proposed by Lloyd and Lipow [16]. They analyze 

a model in which a device, when operated, either succeeds or fails and, if it fails, it 

does so in only one possible way. They assume that a redesign effort, if successful, 

permanently and completely removes the defect — that resultant devices will never 
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fail. If the redesign doesn't succeed, the failure rate is unaffected. If the device fails 

a test, it is redesigned and this redesign has constant probability, less than 1, of 

removing the failure mode. Their analysis leads to an exponential reliability growth 

model of the form 

R n  =  l -

where Rn is the reliability of the device before trial n  is made and A and C are 

parameters of the model which need to be estimated. 

Most recently, the question of when to stop a developmental testing process 

was the subject of Huang's Ph.D. thesis [12], and of Huang, McBeth and Vardeman 

[13]. Huang at al. developed a model for reliability growth with two reliability states 

similar to that given by Lloyd and Lipow. Huang's analysis is the starting point for 

this discussion, and so will next be discussed in some detail. 

A fixed budget, sufficient to build N one-shot systems, is assumed. The develop­

ment process is a sequence of tests and accompanying redesigns. The process ceases 

when the reliability is judged to be acceptable or the remaining number of devices 

becomes small. Binaxy test information indicates if a tested system "passes." A free 

(or negligible cost) redesign is ordered only after a failed test. There are two possible 

states, j = 1,2, for design reliability. When in state j, a tested system fails with 

probability pj. (Assume pi > P2t so that state 2 represents the "good" state, that 

of better reliability.) The design reliability is initially in state 2 with probability So, 

and Si is the posterior probability that the system is in state 2 after observing i tests 

and performing any prescribed redesigns. The system reliability improves only after 

an effective redesign (allowed only after a failed test). The redesign either improves 

reliability (moves it to state 2) with fixed probability u, or leaves it unchanged (the re­



www.manaraa.com

6 

u 

\ —u cG 
Redesign 

Successful 
1 

Figure 2.1: Possible change in reliability due to a redesign 

liability cannot degrade). Figure 2.1 depicts the movement between design reliability 

states graphically. 

Let n be the cost, in terms of potential systems, of development and n„ be the 

resultant system failure probability. Using dynamic programming for a developmental 

phase "costing" n systems, Huang determines a stopping rule n*, so that the final 

mean number of effective systems, 

is as large as possible. 

For a testing program potentially involving n systems, let s* denote the smallest 

value of s„ at which no testing is recommended. Huang identifies the form of n* and 

shows that it is the first i for which 

In this model, 5 is updated depending on whether the most recent test produced 

a success or a failure. If the test is failed, a free redesign (or one of negligible cost), 

which might improve reliability, is performed. The mathematical model is as follows. 

Let Xi e {0,1} specify the outcome of test i. If z,- is 1, the ith test is failed and a 

redesign is performed before any further testing occurs. Otherwise, a successful test 

(2.1) 

Si > 
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gives Xi = 0. Since the (conditional) probability of being in state 2 before test i + 1 

is Si, the probability that the test is a success, i.e., the current reliability, is 

r(s.) = 5,(1 - P2) + (1 - -Si)(l - Pi) (2.2) 

= 1 - Pi + s,(pi - P2). 

To track 5,- through the development process, let 7/o(s,) and 771(5,) give s,+i depending 

on whether test i+1 is a success or failure, respectively. More precisely, j/o and 7/1 give 

the posterior probability of being in state 2 after a test with prior state 2 probability 

5,-, and the test produces a success or failure, respectively. Then, when aj.+i = 0, 

Sj+i is computed as the conditional or posterior probability of a successful test, given 

prior state 2 probability s,-. When a test produces a failure (a;,+i = 1), the posterior 

probability of being in state 2 is calculated by computing the sum of the probability 

of a successful redesign after failure in state 1 and the probability of failure in state 2, 

and dividing by the probability of failure. So, when expressed in terms of the i/a:(s,), 

we see that 5,+i is 

Sj'+i = '/xi+i(5t) = * (2-3) 

Pl ( l  -  S { ) u  +  P2Si _ 
I l-r(si) ' = 1-

Let 14(5) be the optimal expected number of good systems from an n-system 

budget given prior probability 5 of being in state 2. Then, as discussed in Bell­

man [3], Vn is the maximum of the number of eifective systems if the development 

process immediately ceases and "building" commences (nr(s)) and the expected max­

imum number of effective systems if at least one additional test is performed and the 

development process proceeds optimally after that. Then Vi(5) = r(5) ("build" if 
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budget is 1) and 

K(5) = max{nr(s), r(s)K-i('7o(s)) + (1 - r { s ) )Vn - i( j ] i i s ) ) } .  (2.4) 

For small values of n, Ki(s) can be computed using (2.4). Huang characterizes the 

optimal stopping rule and compares its performance against that of several heuristics. 

The research presented in this paper shows how to incorporate redesign costs and 

model regressive (harmful) redesigns in the above framework. We study the utility 

of this model when developing extremely highly reliable one-shot systems (those 

with reliability of 0.999x). Finally and more generally, we propose a new model for 

reliability growth involving more than 2 reliability states. 
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CHAPTER 3. BINARY RELIABILITY MODEL WITH REDESIGN 

COSTS 

3.1 Fixed Cost Designs 

It is importcint to note that in Huang's model it is necessary to allow designs only 

after failed tests. Otherwise, a prescription to achieve good reliability is to simply 

perform (free) redesigns until s is essentially 1. We improve this model by incorpo­

rating design costs and compute an optimal policy when each redesign has the same 

fixed cost. We accomplish this by "uncoupling" the design process from testing and 

allowing it to be a distinct developmental choice. In comparison with Huang's model 

where the developmental action was strictly prescribed at each step, this uncoupling 

allows choices "redesign" and "test" at any time before finally recommending "build." 

Huang allowed redesigns only after a test failed and her model presented two choices 

at each step during design development: "test" or "build." We select from the three 

activities "redesign," "test," or "build," at each developmental step and update s; 

accordingly. 

We represent the redesign cost as d devices {d a positive real) and, as before, a 

test continues to cost 1 device (it's destroyed). (The test cost need not be 1 device, see 

Section 3.3.2.) Redesigns have the same dynamics as before, a constant probability 

u of improving the design reliability when in the poor reliability state (state 1). Let 
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5(s) be the probability that the design reliability is in state 2 after a redesign, given 

prior probability s of being there. Then, by relegating "redesign" (and so reliability 

growth) to a separate activity, the update of s after a test, i]x{s), becomes 

if X = 0 
r(5) 

(3.1) V t { S )  =  -

(compare with (2.3)) where r(s) is as given in (2.2) and 

J(s) = u(l — s) + 5 = « + ̂ (l — u). (3.2) 

3.2 Analysis of Design Cost Model 

The free-redesigns model, given goal (2.1), has functional equation (2.4) given 

on page 8. The functional equation for the new model can be seen to be like (2.4) 

if we understand each piece of that equation. In Huang's analysis, if the current 

budget is sufficient to build n devices, the expected number of effective devices with 

no further development will be n multiplied by the current expected reliability, r(s). 

Thus, if we "build" with the current budget, the expected effective yield will be 

nr{s), the first term in (2.4). On the other hand, should a test (and accompanying 

redesign when relevant) improve the reliability enough that the expected number of 

effective devices remaining is greater than the number given by building, the expected 

yield is the value function, K-i, evaluated depending on whether the test succeeds 

(7?o('S)) or fails (7;i(.s)), multiplied by the current probability of test success or failure, 

respectively. Thus, through "test," we have the second term in (2.4). At each step 

we seek to maximize the yield; hence Vn{s) is as given by (2.4). 
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Keeping the same goal, (2.1), now consider the situation where redesigns aie 

no longer free. The current budget of n devices is decreased by if a redesign is 

performed. The redesign will leave a budget of (n — d) devices. After a redesign, the 

probability that state 2, the desirable reliability state, has been reached is ^(fi). Thus 

the expected effective yield after a redesign is given by 14-<i(^(5)). In this scenario, 

tests still cost one device but the probability of a device possessing good reliability 

is now given by the rjs of (3.1). As before, if the development process were to cease 

("building" to commence), the expected yield would be nr{s). So the new functional 

equation for this model, replacing (2.4), is to choose the maximum of the expected 

payoffs: "build," "test," or "redesign" at each step, that is 

Vn { s )  =  max{j2r(5), r(s)K-i('7o(-s)) + (1 - ''(s))K-i('/i(5)), K-<i(^(5))}, (3.3) 

where t/o, j/i, and 6 are given by (3.1) and (3.2), respectively, and Vi(5) = r(5). For 

notational convenience, label the second term of (3.3) /„_i(s), 

f n - i { s )  = r(s)K-i('7o(5)) + (1 - r(s))F„_i(j/i(s)). (3.4) 

Given a set of parameters {pi,p2,u,N and d), to determine the optimal develop­

ment policy for a design requires the input of sq, the probability the design is initially 

in state 2. Using (3.3), one computes V7v(<so) (exactly how this is accomplished is the 

topic of what follows) and the optimal initial action is "build," "test," or "redesign" 

as the first, second or third term, respectively, of (3.3) gives the function value. Let 

n be the budget remaining after the first development step (here n is either iV — 1 or 

N — d). Suppose that the first action is not to build. Then, the next development 

action is determined using S\, which is updated using (3.1) (test) or (3.2) (redesign), 

as appropriate, to compute V^i(si). The second action is recommended, as before, 



www.manaraa.com

12 

according to which term in (3.3) gives the function value. This process is repeated 

until "build" is recommended (and, why "build" will eventually be optimal aad why 

the development process ceases when this happens, will be discussed below). In what 

follows, we use n to represent the budget at any point in the development process 

and we use N when it is important to emphasize that the discussion pertains to the 

initial budget. 

Given the discussion of the previous paragraph, it is clear that Ki("S) can be 

computed using the recursive definition given in equation (3.3) for only very small 

n. (On a dedicated DEC Alpha workstation (100 MHz, 32 Meg RAM), a reasonable 

graph (s ranges from 0 to 1) of l^o will take days to produce.) The computational 

complexity of the problem as stated grows like 0(3"). So it is infeasible to compute 

solutions using (3.1), (3.2), and (3.3) directly even if n is only on the order of one 

hundred. Happily, the model has properties which enable the computation of a 

solution. We present them now. 

Lemma 3.1 For every s e [0,1], 

r(s)r(77o(s)) + (1 - r(s))r(7/i(s)) = r(5). 

Proof: Since r{T}{s)) = 1 — + ri{s){-pi — P2), we have 

r{s)r{rio{s)) = r(5)[l - + ̂ ^r^(pi - pz)] 
r(s) 

= ''(5)(1 -  PI)  + (1 - P2)S{PI  -  P2),  (3.5) 

and 

(1-r(s))r(7/,(s)) = (l-r(s))(l-pi + —^^(pi-p2) 
1 — 
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= (1-r(s))(l-pi) + p2s(pi-1>2)- (3.6) 

Adding (3.5) and (3.6) gives r(s). • 

Lemma 3.1 says the expected value of the reliability after the next test is the 

current reliability. In other words, nothing is gained, reliability-wise, through testing 

alone. It is the redesign activity that has the potential to improve reliability. Testing 

only provides insight into the current design reliability. This is another improvement 

from the earlier model where the reliability growth after a test (that can potentially 

result in a failure and therefore a redesign) is given by 

piu{l -s)(pi -P2). 

Proposition 3.1 Ifn<d, then K('S) = nr{s). 

Proof. If n < d a redesign cannot be performed so VIi(5) is given by (2.4) on page 8 

and (3.1). When n = 1, 14(s) = r{s). Now, suppose n< d and K,(s) = nr{s). Thus, 

(n + 1) < d and 

K+i(s) = max{(n + l)r(5), r { s )Vn{vo{s ) )  + (1 - r(5))K(i7i(5))} 

= max{(n + l)r(s), r{s){nr{r]Q{s))) + (1 - r(s))(nr(77i(s)))} (3.7) 

= max{(n + l)r(s), nr(s)} 

= (Ti + l)r(s), 

by induction. • 

An important consequence of Proposition 3.1 is that testing will not be beneficial 

if a design cannot be purchased to improve the reliability. It also assures us that 

eventually (in terms of n) optimal plans "build." 
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Proposition 3.2 VIi(s) is piecewise linear. 

Proof. By Proposition 3.1, when n <d, 

14(s) = nr{s) = n{(l - pi) + s{pi - P2)} = as + b, 

a, b real numbers. When n = d+1, 

{d  + l)r(s), s  >  Sc  

(3.8) 

V,+IIS)  =  
S <  Sc  

/o(s), S> Sc 

h i s ) ,  s<sc  

where /,(s) = a,s + 6,-, for real numbers a,- and 6,-. The point Sc  is the value of s 

where the optimal activity changes. It is given by equation (3.11) on page 16. Now, 

suppose Ki('S) is piecewise Hneax for n = 1,2,..., + 1, •. •, A: — 1. To complete the 

proof, we show that Vk is piecewise linear. 

kr{s) 

Vk{s) = max I /t_i(5) 

l4-d(6(s)) 

The first and third terms of Vk are piecewise linear by (3.8) and the induction hy­

pothesis, respectively. Using the induction hypothesis again we have 

fk - i { s )  =  r(s )Vfc_ i (77o(5) )  +  (l- r (5 ) )Vfc_ i (7 /1 (5) )  

=  r{s ) l j { r io {s ) )  +  (1  -  r{s ) ) lmiT] i { s ) ) ,  (3.9) 

where Ij and axe linear components of Vk-x. Simplifsdng, lp(jii{s)) = Op77,(s) + bp ,  

for some reals Op, bp. Using this in (3.9) we have 

r { s ) {a j r jo {s )  +  bj )  + (1 - r { s ) ) {a^T} i { s )  +  b^)  
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= a_,(l - P2)s + bjr{s) + amP2S + b„{l - r{s)) 

— QiqS "}• hq^ 

for a„ bg real constants, since r(s) is linear. • 

Lemma 3.2 allows that we can compute Vn using linear interpolation and get 

exact values except at "corners." 

The following lemmas are used to prove Proposition 3.3. 

Lemma 3.2 For each s G (0,1), »7i(s) < s < Vo{s)-

Proof. Using (3.1), this is easily seen by computing 

and 

r(5) 

Note that Lemma 3.2 proves that s will improve after a test succeeds and decrease if 

a test fails. In the earlier model, this was not true. The value of s could increase or 

decrease after a failed test, depending on the parameters of a problem. Using (2.3), 

we see that if 

(Pl -P2)' 

then a failed test will improve s. (This phenomenon comes about because in Huang's 

model, a failed test immediately results in a redesign, which can have substantial 

probability of improving reliability.) 

Differentiating in (3.1) it is easy to see 

Lemma 3.3 The functions T/ O(S) and J/i(s) are monotone increasing in s. 
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Proposition 3.3 For each n, Ki(s) is monotone increasing in s. 

Proof: If 0 < So < Si < 1, we want to show that K(so) < K(si)- By Proposi­

tion 3.1, when n <d, K(5) = nr{s) = n(l — pi + s(pi — P2)) and, since pi > P2, K 

is monotonically increasing in s. When n = d + 1, Proposition 3.1 gives 

{d + l)r(s), s> Sc 
vd+i(s) = max^ 

where the cut-ofF point, Sc is 

(3.10) 
r(5(5)), s < Sc, 

u{pi - P2) - d{l - pi) 
= oh-k)(<i+u) '  

the point where the two parts of (3.10) are equal. Now can be seen to be 

monotonically increasing since the slope of each line segment is positive (the first has 

slope {d + l)(pi — P2) and the segment corresponding to an argimient of r(5(s)) has 

s lope (1  -  u){pi  -P2) ) .  

Now suppose that for n = 1,2,..., c? +1, • • •, — 1, VJj is monotone increasing in 

s. Since nr(s) is linear with positive derivative and K-(i(^(5)) is monotone increasing 

by virtue of the induction hypothesis, we will be done if we show that fk-i{s) (from 

(3.4) on page 11) is monotone increasing. Let 0 < A < 1 — 5. We wish to show that 

fk-i{s + A) > fk-i{s). Computing the difference 

fk - i i s  + A) - /jt-i(s) 

= [r{s  + A)Vk- i {vo{s  +  A)) + (1 - r { s  + A))\4_x (771(5 + A))] 

-[r{s)Vk.i{vo{s)) + (1 - r(s))Ffc_i(771(3))] 

= r{s)[Vk-iivo{s + A)) - Vk-i{T]Q{s))] 

+(1 -  r{s ) ) [Vk- i {T) i { s  + A)) - T4_i(77i(5))] (3.12) 

+A(pi - P2)[Vfc-i(j/o(s + A)) - Vk- i { r ] i { s  -f A))], 
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we see that by virtue of the induction hypothesis and Lemma 3.3, the first two terms 

in (3.12) are positive. The last term is seen to be positive by using the induction 

hypothesis along with Lemma 3.2. • 

Proposition 3.4 For each n,Vn{s) is convex. 

Proof. There aie only a finite number of possible developmental strategies, at 

most 3'' {p = N X max{p,q}, where d = p/q) in the N device problem, and VN{S) is 

the maximum of that finite number of linear functions of s. • 

Using convexity and the fact that 14(1) = nr(l) = n(l — P2), we have 

Proposition 3.5 j/s € [0,1] is such that VJi(5) = nr(5), then for all s <t <1, 

K(<) = «?'(<)• 

Proposition 3.5 and the fact that 14(1) = nr(l) = n(l — P2) imply that the set 

of s where ln(s) = nr[s) is a nonempty interval containing 1. (That is, for every n 

we "build" for large enough s.) Let s* be the first point at which 14('S) = nr(s). We 

now show that the sequence of cut-olF points is monotone nondecreasing. 

Proposition 3.6 The sequence of cutoff points, sl^s^,..., is such that 

4 < 4 < 4 < - - -

Proof. The proof here is adapted (for this model) from one of a similar result for 

Huang's model given in [13]. 
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It is sufficient to show that if s < s*, then it is also true that s  <  ^n+l-

Suppose that the budget is sufficient to build (n + d + 1) devices. Then we 

may proceed by building one device, setting it aside, and consider the developmental 

program arising from a budget of n + Thus we have 

K+d+i(s) > y„+<i(s) + r(s). (3.13) 

If 5 < either a test or a design will be performed. First, suppose making a test 

is the initial optimal action, given the current s. Using (3.4) combined with (3.13) 

we have 

fn+d(^) = r(s)Vn+d(M^)) + (1 -  ''(5))K+<i(»7i(s)) 

> r(s)[V„+d-i(77o(s)) + K'7o(s))] + (1 - r(s))[K+d-i(7/1(5)) + r(7)i(s))J 

= f„+d-i(s) + r(s), 

using Lemma 3.1. 

Since 3  <  s*^j ,  and a test is the optimal first step, fn+d- i i s )  > (re + d)r { s ) .  

Using this with the calculation just completed 

fn+d{s) > fn+d- i i s )  +  r { s )  

>  (n + d)r {s )  +  r(s) 

= (re + d + l)r(s), 

which implies that s < sJl+j+i. 

Now, suppose that a design is the optimal initial activity at the current s  value. 

Then (3.13) can be written as 

Vn+d+iis) > K(<5(3)) + r(5). 
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Since 5 < and a design is the prescribed fost activity, we have that 

K(^(5)) > (n + (i)r(5) 

and so 

Vn+d+i (s) > (n + ̂ Ms) + r{s) = (n + rf + l)r(5), 

which again implies that 5 < • 

Note that Proposition 3.1 says that s* is zero when n < d and that 5^+1 is given 

by Sc of (3.11). For larger n, we determine s* and the developmental activities for 

5 < s* using the methods of the next section. 

3.3 Calculation of Kt('S) 

3.3.1 Method 

As mentioned earlier, the recursive definition (3.3) is directly useful for comput­

ing Vn only for small values of n, values less, certainly, than 30. But the theory of 

the previous section allows accurate and fast computation of V even for very large 

n. Our approach is as follows. 

Given a set of parameters — PuPii u, N, and d = pjq — we compute and store 

the values of Vi('S) = ^'(5), for 5 on a grid of 100,001 equally spaced points across [0,1]. 

Using (3.3) on page 11 and linear interpolation, we compute and store V2, V3,..., V^r. 

The method requires that we save only the last j = [max{p, q} + 1] arrayed Ki. The 

rational design cost can be looked upon as changing the size of the initial budget from 

N devices to Nq "pieces," where d = p/q. Actually, since we require at least 1 device, 

the budget has (iV — 1)5 +1 pieces. Let m be the number of budget pieces currently 

under consideration. We will compute Vm for m ranging from q to Nq. Using (3.3) to 
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compute Kn, the "testing" function (/n-i) will require linear interpolation in 

while the "redesign" function (V„_d(^(s))) will be computed using linear interpolation 

in the values of t4i - p -  Thus, at each step we will need to store at most the last j 

functions V. A pseudo-code computer program to compute Ki(s) using this method 

is given in Appendix. 1. 

Some examples will clarify. For the first example, suppose the initial budget is 

N = 4 devices and a redesign costs d = Zf2 devices. We consider a total budget 

of (4 — 1)2 + 1 = 7 pieces. Let m be the number of budget pieces currently under 

consideration so that m ranges from 2 (the minimum budget of 1 device) to 8 (the 

initial budget of 4 devices). Table 3.1 shows how we compute ^(s) and which 

subproblems are stored at each step. When m — p<q (here: m — 3 < 2), a redesign 

is not permitted since less than 1 device will result from considering these cases. 

When m — q < q (here: m — 2 < 2), a test is not permitted for the same reason. 

The subscript on the "test" function / from (3.4) on page 11 is changed to reflect 

that 1 device is now q "pieces." Similarly, the subscript on the "redesign" function 

V(6(5)) is written to correspond to looking p "pieces" back in the computed and 

stored V function values. 

Table 3.1 is to be read as follows. The column titled "Array" gives the numbers of 

Table 3.1: Computing V4, <i = 3/2 

Array m Vm(3) m Kn(s) 

1 2 max{r(s)} 6 max{3r(5), /4(s), ̂ ^(^(s))} 
2 3 max{r(5)} 7 max{3r(5), fs{s), \4(^(s))} 
3 4 max{2r(s),/2(s)} 8 max{4r(s), V5(^(s))} 
4 5 max{2r(5), fsis), ̂ 2(^(5))} 
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the stored arrays needed to compute Vm- For example, to compute V5 one selects the 

largest of the values l.5/2jr(s) = 2r(s), fs-2{s) = fsis), and ^5-3(6(5)) = ^2(5(5)). 

([ij = Integer part of x.) The 2r(s) term is calculated using (2.2) while the fm-q{s), 

and VTn-p{S{s)) terms are calculated using linear interpolation between the stored 

values in the Array containing the appropriate V values. Thus, Vs will require linear 

interpolation in the values of V3 (stored in Array 2) and V2 (stored in Array 1). Once 

the values stored in an array have been used, they can be overwritten. Hence, Ve 

(which will interpolate in V3 and V4) will use Arrays 2 and 3 and can be stored in 

Array 1. 

The second example is provided to illustrate that the number of stored arrays 

must be one greater than maximum of the numerator and denominator of d, the 

design cost. Again, we consider an initial budget of iV = 4 devices but now choose 

d = 2/3. The axrays needed to compute Vjvg = Vu are depicted in Table 3.2. In 

this example the number of budget pieces m ranges from 3 to 12 and now the testing 

function (/n-i) will look back 3 steps while the redesign function (K-d(^('S))) looks 

back only 2 steps. Note that Vu and Via are stored in Arrays 1 and 2, respectively. 

Table 3.2: Computing V4, d = 2/3 

Array m Kn(3) m K>(3) 

1 3 max{r(s)} 7 max{2r(5), f4{s), ̂ 5(^(5))} 
2 4 max{r(s)} 8 max{2r(5), fsis), V6(^(s))} 
3 5 max{r(5),r(5(s))} 9 max{3r(5), feis), ̂ 7(6(5))} 
4 6 max{r(s), fsis), V4(5(s))} 10 max{3r(5), fris), T4(^(s))} 

1 11 max{3r(5), fsis), V9(<5(s))} 
2 12 max{4r(5), fais), V'io(5(s))} 
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3.3.2 General Fixed Test Costs 

As mentioned in Section 3.1, we can compute VAr(s) with ajiy test cost. We use 

the method of Section 3.3.1. 

Suppose now that a test costs t — p't/qt devices and a redesign costs d = de­

vices (the primes will be dropped). We assume that both fractions are in lowest terms 

(i.e., in each one, the numerator and denominator do not share any common factors) 

and express the test and redesign costs in terms their least common denominator. 

Let q be the least common multiple of {^t, so that the test and redesign 

costs can be expressed as t = ptIq and d = pd/q, respectively. Proceeding as above 

(Section 3.3.1), the initial budget of N devices becomes Nq "pieces." 

We compute 

K(s) = max{ [n/gjr(s), fn-M, V;-pd(<5(5))}, (3.14) 

([a:J is the integer part of x) where n ranges from q (1 device) to Nq and, to start, 

Fg(s) = r{s). 

li n — Pt > q, then (a test can be bought) 

fn-p,{s) = r{s)V„-p,{T]o( s ) )  + (1 - r(s))K-p,('7i(5)) (3.15) 

and otherwise / is zero. A redesign cannot be purchased if n — pj < q^, and so then 

k-p.(^(5)) = 0. 

To calculate 14 on a computer will require storage of the previous 

max{pt,p(i} + 1 computed values of V for interpolation. The program outlined in 

Appendix. 1 is easily modified to compute V when a test costs t devices. The neces­

sary modifications axe given at the end of Appendix.l. 
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3.3.3 Behavior of V 

3.3.3.1 Qualitative Analysis of the Effect of Considering Redesign 

Costs To explore how design costs affect the model, we simulated the development 

process for a factorial set of the paxameters n,pi,p2, u, d (as a percent of n), and sq. 

The values of p2 included were chosen by setting m = p2fpi- The values we considered 

are given in Table 3.3. This gives a total of 972 (= 3® x 4) different problems. Use of 

an optimal strategy was simulated 5,000 times for each combination of parameters. 

A description of the computer program and a discussion of the random number 

generator used to perform these simulations is given in Appendix.2. 

Table 3.3: Values of Parameters Used in 
Factorial Study 

Parameter Values 

n 100, 500, 1000 

n 0.2, 0.5, 0.8 
m 0.1, 0.3, 0.5 
u 0.01, 0.1, 0.5 
d 0.01, 0.02, 0.05 
s 0.05, 0.25, 0.5, 0.75 

Huang [12] demonstrated that the optimal development process can significantly 

improve a final stockpile — in some cases, the process is expected to more than 

triple (indeed, almost quadruple) the expected number of effective systems. In the 

current model, with two activities to choose from, we woiild like to know what mix 

of activities achieves the expected optimal yield, 14(5). An example will help make 

this clear and Table 3.4 contains the summary output from four of the problems 

simulated, the ones with parameters {pi,p2,u,n,d) = (0.8,0.4,0.5,1000,5%) and 
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So € {0.05,0.25,0.50,0.75}. 

Each of the four sections of the table contains the following. The first line in 

each section describes the initial values of the problem summarized in that section: 

the starting point (SQ), the value of equation (3.3) (V(5o)) at this point, the initial 

"build" value (Nr(so) = 1000r(so))5 and the 1®' Action — which activity ("redesign," 

"test," or "build") is the optimal first step given the current sq. 

The Measure colimin gives the names of the quantities for which we computed 

the minimum, maximum, mean, standard deviation, and standard error during the 

5,000 simulated development processes. The quantities recorded are as follows. 

Given the initial value sq, "Final 5" is the value to which it grew during the 

development process (the mean reliability growth attained in each problem can be 

computed as the difference, r(s) — r(so))- (Here, x refers to the mean value of x.) 

"Yld(D)" is the number of devices ultimately "built" (stockpiled/delivered at the end 

of the development process) and is iV—DevCost (development cost) (in Table 3.4, 

N = 1000). The expected number of effective devices is given by "Yld(E)"which is, 

on average, F(5o), and is approximately Yld(D)r(s). The last three rows of each 

section of Table 3.4 summarize the number of tests, redesigns, and the total develop­

ment cost for these actions, in the rows named "nTest," "nDesign," and "DevCost," 

respectively. 

As one would expect, as the initial probability of being in state 2, So, increases, 

so does the expected yield (F) and the likelihood of achieving good reliability, both 

at lesser cost as well. 

The improvement in the effective yield, the effect of the development process, 

decreases as sq increases. This can be measured, roughly, as the ratio of Ki(so)/n''(so) 
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Table 3.4; Example of simulation results of 5,000 runs with param­
eters: {jpup2,u,n,d) = (0.8,0.4,0.5,1000,5%) 

Measure Min Max Mean S.Dev. S.Err. 

(so, V(5o),1000r(5o), 1®'Action) = (0.05,525.57,220.00, Redesign) 

Final s 0.5198 0.9971 0.9939 0.0072 0.0001 
Yld(D) 112.00 945.00 878.66 82.0095 1.1598 
Yld(E) 45.69 565.60 525.14 49.3682 0.6982 
nTest 5.00 138.00 20.7056 14.3728 0.2033 
nDesign 1.00 15.00 2.0126 1.4057 0.0199 
DevCost 55.00 888.00 121.3356 82.0095 1.1598 

(so, l^(5o), 1000r(5o), 1®'Action) = (0.25,536.44,300.00, Test) 

Final s 0.9751 0.9973 0.9942 0.0021 0.0000 
Yld(D) 343.00 994.00 897.45 85.2290 1.2053 
Yld(E) 202.38 594.77 536.42 51.2316 0.7245 
nTest 6.00 121.00 22.8642 14.5702 0.2061 
nDesign 0.00 11.00 1.5938 1.4762 0.0209 
DevCost 6.00 657.00 102.5542 85.2290 1.2053 

(50, V(5o), 1000r(5o), 1®' Action) = (0.50,553.63,400.00, Test) 

Final s 0.9686 0.9973 0.9945 0.0020 0.0000 
Yld(D) 347.00 995.00 926.39 80.0052 1.1314 
Yld(E) 204.32 595.37 553.81 48.1135 0.6804 
nTest 5.00 103.00 21.2308 14.0163 0.1982 
nDesign 0.00 11.00 1.0476 1.3735 0.0194 
DevCost 5.00 653.00 73.6108 80.0052 1.1314 

(so, V(5o), lOOOr(so), 1®' Action) = (0.75,572.65,500.00, Test) 

Final s 0.9114 0.9973 0.9948 0.0022 0.0000 
Yld(D) 232.00 996.00 956.61 71.3897 1.0096 
Yld(E) 130.98 595.97 572.00 42.9535 0.6075 
nTest 4.00 123.00 16.4408 13.7489 0.1944 
nDesign 0.00 13.00 0.5390 1.1956 0.0169 
DevCost 4.00 768.00 43.3908 71.3897 1.0096 
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and will be discussed further, below. In Table 3.4, the value of this ratio is 2.39 when 

So = 0.05 and when So = 0.75, the ratio has decreased to 1.14. 

Our interest in these simulations, the question regarding how the optimal devel­

opmental process transpires, is answered, in summary fashion, by the remainder of 

the table. 

Specifically, consider the third section of Table 3.4, where sq == 0-50. The ex­

pected effective yield is y(0.50) = 553.63, while initially "building" would give an 

expected effective yield of 1000 xr(0.50) = 400 (= 1000(.5(1—.8)-l-.5(l—.4))). The ini­

tial activity is to perform a test. During the 5,000 runs, on average, 5o grew from 0.50 

to 0.9945, and the design reliability grew from r(0.50) = 0.4 to r(0.9945) = 0.5978. 

(The best achievable reliability in this problem is 1 — p2 = 0.60.) This growth is 

accomplished by a process which, on average, consists of about 21.2 tests and 1.048 

redesigns (in this problem, redesigns cost 0.05(1000) = 50 devices each) for a (mean) 

total development cost of 21.2 -i- (1.048(50)) = 73.6 devices. 

We can use the output from all the simulated development processes to give a 

rough description of how the parameters affect Vn. Proceeding as in Huang [12] and 

Huang, McBeth, and Vardeman [13], we define 

^ VN{S)  
— / \ 9 nr(5) 

to make a simple tool for investigating the changes in the effectiveness of the final 

stockpile due to the development process. Further, we examine the costs involved in 

the development processes as a proportion of the initial budget, and so define 

^ _ DevCost gn = • 
n 

Tables 3.5 and 3.6 give frequency counts for these two measures for each of the initial 
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Table 3.5: Frequencies of Table 3.6: Frequencies of Cn, by n 
Cr„, by n 

Interval 

n 

Interval 1000 

n 

500 100 
Interval 1000 500 100 

Interval 1000 

n 

500 100 [0.400, 0.500) 4 4 2 
[3.5, 4.0) 2 2 2 [0.350, 0.400) 2 2 1 
[3.0, 3.5) 5 5 3 [0.300, 0.350) 6 5 4 
[2.5, 3.0) 5 5 5 [0.250, 0.300) 1 3 5 
[2.0, 2.5) 13 9 10 [0.200, 0.250) 12 12 9 
[1.5, 2.0) 22 24 16 [0.150, 0.200) 10 7 16 
[1.4, 1.5) 12 11 10 [0.125, 0.150) 9 14 14 
[1.3, 1.4) 9 11 13 [0.100, 0.125) 25 23 16 
[1.2, 1.3) 22 18 13 [0.075, 0.100) 15 12 19 
[1.1, 1.2) 30 31 32 [0.050, 0.075) 30 34 40 
(1.0, 1.1) 77 73 69 [0.250, 0.050) 56 57 36 
[1.0, 1.0] 127 135 151 (0.000, 0.025) 27 17 12 

[0.000, 0.000] 127 134 150 

budgets n € {100,500,1000}. 

Comparing the last two rows in Tables 3.5 and 3.6, we see that there were 

two problems (one with n = 500, the other with n = 100) in which no reliability 

growth (or, more precisely, no growth in effectiveness of the yield) occurred hut 

developmental costs were required! The simulation results for the two problems 

in which this occurred are given in Table 3.7 and axe summarized below. 

In the first problem in Table 3.7, 5o = 0.50 is less than 5J00 ~ 0.50051 (5* is not 

in the table and was computed elsewhere) and we see that so is in a "redesign" region. 

A single redesign gives 5i = 0.55 which is compared to = 0.4959 (the resulting 

problem's cut-off point). Since si exceeds Sgg, the development process ceases. 

For the second problem presented in Table 3.7, the development process can 

be considerably more involved. In this problem, the mean developmental cost is 

23.05 devices which are spent, on average, to buy 4.69 tests and 3.673 redesigns 
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Table 3.7: Simulation results of two problems with positive de­
velopmental costs Euid no reliability growth 

Measure Min Max Mean S.Dev. S.Err. 

{pi ,p2. ,u,n,d)  = (0.20,0.02,0.10,100,1%) 

(5o, V'(so),100r(so)? 1®'Action) = (0.50,89.00,89.00, Redesign) 

Final s 0.5500 0.5500 0.5500 0.0000 0.0000 
Yld(D) 99.00 99.00 99.00 0.0000 0.0000 
Yld(E) 89.00 89.00 89.00 0.0000 0.0000 
nTest 0.00 0.00 0.0000 0.0000 0.0000 
nDesign 1.00 1.00 1.0000 0.0000 0.0000 
DevCost 1.00 1.00 1.0000 0.0000 0.0000 

{pi ,p2,u,n,d)  = (0.80,0.40,0.01,500,1%) 

(5o,V(5o),500r(so), 1"'Action) = (0.75,250.00,250.00, Test) 

Final s 0.0722 0.9000 0.7754 0.2351 0.0033 
Yld(D) 311.00 499.00 476.95 52.8151 0.7469 
Yld(E) 71.64 279.44 248.20 60.4912 0.8555 
nTest 1.00 48.00 4.6872 6.7237 0.0951 
nDesign 0.00 34.00 3.6730 9.3889 0.1328 
DevCost 1.00 189.00 23.0522 52.8151 0.7469 
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(here, redesigns cost 5 devices each). At the end of the development process, s has 

improved slightly from its initial value of 0.75 to 0.7754 (mean value). The first 

action is a test. K this test is a success, the development process stops. However, 

if this test is failure, the process could prove to be very expensive the worst case 

observed results in a developmeJit process that consumes 189 devices! This problem is 

an excimple of a trend we observed when studying the whole set of simulation results 

graphically using XGobi, a computer package developed for the purpose of enabling 

visualization of high dimensional data. We now summarize those observations. 

For all three budget sizes, n, the best growth (above 3.5) occurs when, not 

surprisingly, (pi,p25W,5o) = (0-8,0.08,0.5,0.05) and d € {1%,2%}. These are the 

failure and redesign probabilities and redesign costs that allow the greatest potential 

for reliability growth. These problems have the cheapest optimal policies as well. 

The poorest performances (in terms of "low" G and "high" C) come from problems 

which also have 5o = 0.05, but with probabilities pi = 0.8, P2 € {0.08,0.4}, and 

u € {0.01,0.1}. These problems aie the most expensive and give only mediocre 

growth, in the interval [1.30,2.21]. The problems which have 1% and 5% redesign 

costs, in general, have more expensive development programs than those problems in 

which the design cost is 2%. 

We tried to characterize the optimal development process by way of simple rules. 

By a developmental rule we mean that we will perform the activities prescribed, in 

the order given, and then "build." Using "T" and "R," for "perform a test," and 

"perform a redesign," respectively, we ran a large number of problems and compared 

the expected effective yields from the five rules: TR, RT, TTR, TRT, and RTT to 

Vn- Additionally, we looked at a nimiber of problems using the rule, "perform k tests 
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in a row, then a redesign, and then "build"", for k € {1,2,..., 10}. Our efforts to 

chaxacterize effective development processes by way of these rules did not reveal any 

interesting observations or trends. 

Given a set of problem parameters, the optimal developmental policy according 

to goal (2.1) can be computed by the methods of this chapter quickly, in linear time. 

The lesson of the analysis given here, that is, compute the policy for any problem in 

which one is interested, is reinforced in an interesting, and rather surprising way, in 

the next section. 

3.3.3.2 Surprising Behavior It seems natural to expect that, for a fixed 

budget n, as 5 increases across [0,1], the reconmiended action would change from 

"redesign" to "test" to "build." That is, if one thinks the chances are poor that 

acceptable reliability has been achieved, perform a redesign; if one is uncertain about 

the reliability, another test will help to estimate it; finally, if one is confident that the 

reliability is good or cannot be improved — build. 

For many sets of parameter mixes, this is indeed the course of action prescribed. 

One can devise parameter vectors where the optimal behavior is always "build," 

or to "redesign and then build," or to "test and then build." (As is assured by 

Proposition 3.5 on page 17, the recommended behavior will be "build" for large 

enough s.) But the conjecture that is intuitively appealing, namely that "usually" 

we "redesign for small s," "build for large s," and "test for s in between" is, however, 

false! The "test" and "redesign" regions may be interleaved as demonstrated by 

Figure 3.1. The splitting of the redesign region in this problem occurs in Ve where, 

for a short interval, the optimal move is to test. At the redesign/test change-over 
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point, the slope increases from 2.4576 to 3.7839. The difference in final yield, if a 

redesign and not a test was performed for s in the test interval, is inconsequential as 

can be seen from the graph of Vg in Figure 3.2. 

The conjecture that this behavior occurs only because both redesign and test 

have unit cost (1 device) is also false. We have found an instance where there axe 

repeated changes between "redesign" and "test" in Vei with redesign cost of d = 5* 

(devices) and {pi,p2, u) = (0.8,0.4,0.1). We have computed in this problem using one 

hundred thousand, five hundred thousand, and 1 million points s and as the density 

of our grid grows, the number of crossovers does too. For s € (0.1749,0.2969), 

the optimal developmental behavior is chaxjtic. The recommended action changes 

repeatedly between "test" and "redesign." A graph of Vei and a blow-up of its 

behavior for s € [0.1749,0.1800] is given in Figtire 3.3. 

The graph in Figure 3.4 shows the values of s at which the developmental activity 

changes. For 5 less than 0.17497 the recommended strategy is "redesign." On the 

graph, the point (0.17497,1) signals "test." Now the recommended action changes 

repeatedly. On the interval [0.17497,0.17499) —test. When s € [0.17499,0.1751) — 

redesign, for s e [0.1751,0.17511) — test, s 6 [0.17511,0.17524) — redesign, and so 

on. This phenomenon is very interesting. It is counterintuitive that the corner points 

of the sub-problems would be so numerous. 

3.3.4 Regressive Redesigns 

In our non-regressive model, the posterior probability of being in state 2 after a 

redesign was given by (3.2) on page 10, S{s). 

To model the possibility of regressive designs, let Uj be the probability that a 
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V2{s) = 

Vi{s) = r{s) = 

1925 + 53 
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192s+53 ^13 . , 
' - i s  

3(48s + l) 13 ^ 
— 5r-' 48 
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—^25—. - < Yn 
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2(48s +1) 
25 ' 

^ 139 - . , 
192^^^ 384 

139 

384 
< s (Build) 

Vs{s) = 

f 3(768s+457) 
1250 

2(192s + 53) 
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48s+ 1 
10 ' 

s < 
311 

1536 
(Design) 

311 ^ 187 - . -
< s < (Design) 

1536 - 432 ^ ^ ' 

187 
432 

< s (Build) 

Figure 3.1: Explicit form of 14(s) which shows "splitting" 
in redesign region. 
{pi , P 2 ,u,N,d) = (.98, .02, .2,6,1) 
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3(30725 + 3053) 
6250 

2(768s + 457) 

625 

s < 
19 

6144 

19 ^ 502 
< s <  

6144 1727 

527 VJs) = 2(29562. + 8413) 50^ < . 
^ ^ 15625 ' 1727 " 1752 

192s + 53 

50 ' 

3(48s +1) 
25 

527 ^ 47 
< s < — 

1752 - 96 

£7 
96 

< s 

(Design) 

(Design) 

(Test) 

(Design) 

(Build) 

Figure 3.1: (continued) Split Ve - with "test" between two 
"redesign" regions 

Split V6 

Figure 3.2: Graph of 1^(5) computed in Figure 3.1. Notice the 
"test" region at s « 0.30. 
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V61, design cost 5 

Figure 3.3: Graph of Vei- Test and redesign region interleaved 

V61, Actions 

2 Design 

0.178 0.179 0.175 0.180 

Figure 3.4: Example of chaotic behavior in Vq \. The behavior 
occurs for 5 6 [0.1749,0.2969]. 
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redesign performed when reliability is in state j results in good design reliability. 

The situation is illustrated in Figure 3.5. As always, s is the probability of being 

in the good reliability state. After a redesign is completed, the design may have 

attained good reliability in one of two ways: if the reliability was poor before, a 

successful redesign improved it (probability of tii(l — s)) or, an unnecessary redesign 

is performed but it doesn't haxm the reliability (probability of 7x25). So, replacing 

(3.2), the update of s after a potentially harmful design is 

If we pick ui =u (from (3.2)) and, for reliability growth, require U2> uj, the eifect, 

as expected, is to slow the rate at which the reUability improves. 

"1 

I — U2 

Figure 3.5: Two state model with u,- giving the probability that a 
redesign performed in state i will yield good reliability. 

We don't present the details of the theory here as the arguments used thus 

fax in this chapter don't change significantly. That is, the theory and analysis from 

Section 3.2 carry over to this model with very few adjustments. The slope of r(5(s)) in 

(3.10) becomes (ui — U2)(pi ~P2) aJid the redesign/build cut-off point for a remaining 

^2(5) = tti(l — S) + U2S = Ml + s(«2 — Ml)- (3.16) 
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budget of n = d + 1 given in (3.11) becomes 

_ u i j p i  - p 2 ) - d { l - p i )  
~ (pi - p2){{d + 1) - («2 - «i))" 

The results of a number of calculations comparing the non-regressive with the 

regressive redesigns model are shown in Tables 3.8 and 3.9. For several combinations 

of {pi,p2iU,d)^ the function values (V500) and their associated cut-ofF points, s* (the 

smallest value of 5 at which "build" is recommended, i.e., ^500(5*) = 500r(s*')), aie 

presented in Table 3.8. We include a number of different u values because it is not 

evident before compaxing with the values of s* and V in Table 3.9 which comparison 

is most appropriate. The u values given in Table 3.8 correspond to to the ui and 

(u2 — values considered in Table 3.9. In each case, the closest comparison between 

tables occurs when u\ (from Table 3.9) is compared with u (in Table 3.8). Some very 

loose conclusions can be drawn. 

As expected, the cut-oif points and resultant yields are, in general, smaller in 

the regressive model. The most extreme difference occurs when (pi,p2j<^,^^1,^2) = 

(0.5,0.25,10,0.1,0.7). In this case the yield from the regressive model is about 87% 

of that given from the non-harmful one. From the table we see that, unsurprisingly, 

the larger the value of U2, the smaller the difference in yields between the two models. 

The larger the cost of the design or the larger the possibility for reliability growth 

(the difference between pi and ^2)5 the smaller the difference in yield between the 

two models. 

3.3.5 High Reliability 

Ekstrom and Allred [10] explain that new solid rocket motor systems must have 

verified (not simply predicted) reliabilities of 0.999a:. Table 3.10 examines the pos-
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Table 3.8: Non-regressive cut-ofF points 
and values 

pi P2 d u s* Vsoo 

0.1 0.8583 357.28 
0.4 0.9343 366.78 

5 0.5 0.9452 368.16 
0.6 0.9544 369.30 
0.8 0.9658 370.72 
0.1 0.6687 333.59 
0.4 0.9136 364.20 

0.5 0.25 10 0.5 0.9229 365.36 
0.6 0.9308 366.35 
0.8 0.9469 368.36 
0.1 0.0 250.00 
0.4 0.8510 356.37 

25 0.5 0.8806 360.08 
0.6 0.8976 362.20 
0.8 0.9186 364.83 
0.1 0.9951 458.23 
0.4 0.99571 458.46 

5 0.5 0.99575 458.47 
0.6 0.99578 458.48 
0.8 0.99582 458.50 
0.1 0.9941 457.89 
0.4 0.9955 458.39 

0.8 0.08 10 0.5 0.99562 458.42 
0.6 0.99567 458.44 
0.8 0.9957 458.47 
0.1 0.9899 456.35 
0.4 0.9950 458.19 

25 0.5 0.9952 458.27 
0.6 0.9953 458.32 
0.8 0.9955 458.38 
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Table 3.9: Regressive cut-ofF points and val­
ues: values computed using (3.16) 
in (3.3). Compaje the V500 values 
given here with those in Table 3.8. 

Pi P2 d "2 s* Vsoo 

5 0.1 
0.7 0.6848 335.60 0.1 
0.9 0.7974 349.67 

0.5 0.9 0.9280 366.00 

0.5 0.25 10 0.1 
0.7 0.3254 290.67 0.5 0.25 10 0.1 
0.9 0.5207 315.08 

0.5 0.9 0.9154 364.42 

25 0.1 
0.7 
0.9 

0.0 250.00 

0.5 0.9 0.8733 359.16 

5 0.1 
0.7 0.99497 458.19 0.1 
0.9 0.99502 458.21 

0.5 0.9 0.9957 458.47 

0.8 0.08 10 0.1 
0.7 0.9940 457.84 0.8 0.08 10 0.1 
0.9 0.9941 457.86 

0.5 0.9 0.9956 458.42 

25 0.1 
0.7 0.9896 456.24 25 0.1 
0.9 0.9898 456.31 

0.5 0.9 0.9952 458.27 
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sibility of perceiving reliability changes in model (3.3) as highly reliable systems are 

developed to become those possessing "extremely" high reliability. The model, per­

haps surprisingly, offers advice - to perform a redesign if s is low. However, since s is 

a probability, the model cannot verify conformance to reliability specifications, but 

rather, predicts compliance with them. 

Table 3.10 demonstrates three interesting features of the model. AU the problems 

examined had only two activities - the optimal behavior was always to redesign to 

the left of 5*. This is encouraging, since the possibility of a system failure is unlikely. 

Another way of considering these outcomes points to some of the artificiality of the 

model: if no testing is allowed, why redesign (potentially, repeatedly)? Models need 

to be developed in which the probability of a successful redesign is not fixed but is a 

function of the development process history. 

Further, the lajger the probability of a successful design, the later the model 

advises stopping the development process. This is especially evident in the last two 

rows of the table where n = 2000. 

And finally, since the optimal process never reconmiends testing, when the design 

cost d and the budget n are in the same proportion, the problems are identical. This 

is apparent if, for example, with (pi,p2) = (0.05,0.01), one compares n = 100, c? = 1 

with n = 500, c? = 5 {d/n = 0.01), to see that the cut-off points are identical! How 

does this happen? The design costs and so the step sizes between subproblems are 

in proportion to each other when testing is not part of the optimal solution. 
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Table 3.10: Extremely High Reliability: In all problems examined, s* is the point at 
which the recommended activity changes from design to build. Testing 
was never called for. Notice that if d and n are in the same proportion, 
then the cut-off point is unchanged as well. 

Pi P2 n d u s* Pi P2 n d u s* 

0.25 0.0388 0.25 0.9013 

1 
0.5 0.5099 

1 
0.5 0.9506 

0.75 0.6711 
1 

0.75 0.9670 

100 
1.0 0.7525 1.0 0.9753 100 
0.25 0.0 0.25 0.8032 

2 
0.5 0.0294 o 0.5 0.9012 
0.75 0.3444 0.75 0.9340 
1.0 0.5050 1.0 0.9505 

5 1.0 0.0 0.25 0.5123 
0.25 0.8032 

0.05 0.01 1000 e; 0.5 0.7537 

1 
0.5 0.9012 

0.05 0.01 1000 
0.75 0.8353 1 

0.75 0.9340 1.0 0.8763 

0.05 0.01 1.0 0.9505 0.25 0.0388 0.05 0.01 
0.25 0.6087 

10 0.5 0.5099 

2 
0.5 0.8028 

10 
0.75 0.6711 

0.75 0.8682 1.0 0.7525 
1.0 0.9010 0.25 0.0 
0.25 0,0388 

25 
0.5 0.0 

500 5 
0.5 0.5099 25 

0.75 0.1818 500 
0.75 0.6711 1.0 0.3813 
1.0 0.7525 
0.25 0.0 

10 
0.5 0.0294 10 
0.75 0.3444 
1.0 0.5050 

25 1.0 0.0 
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Table 3.10: (continued) 

Pi P2 n d u s* 

100 1 1.0 0.0 
0.25 0.1173 

1 0.5 0.5569 
0.75 0.7042 
1.0 0.7780 
0.25 0.0 

500 9 0.5 0.1155 
500 

0.75 0.4088 
1.0 0.5560 

5 1.0 0.0 
10 1.0 0.0 

0.01 0.001 25 1.0 0.0 
0.25 0.5573 

1 0.5 0.7782 
0.75 0.8520 
1.0 0.8890 
0.25 0.1173 

1000 0 0.5 0.5569 
1000 

0.75 0.7042 
1.0 0.7780 
0.5 0.0 

5 0.75 0.2612 
1.0 0.4450 

10 1.0 0.0 
25 1.0 0.0 

500 1 1.0 0.0 
0.001 0.0005 1000 1 1.0 0.0 

2000 1 1.0 0.0005 
0.001 0.0001 2000 1 1.0 0.4445 
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CHAPTER 4. MULTIPLE-STATE RELLA.BILITY MODELS 

4.1 The Need for a New Model 

We have thus far assumed that the design has two reliability states: "good" and 

"bad." While this is unrealistic for a development process which may improve system 

reliability in steps, it has several advantages. The model is an obvious and relatively 

easy first step in understanding the sequential nature of the decision problem; it has 

mathematical properties (piecewise linearity, convexity, etc.) which can be exploited 

to compute solutions quickly and accurately; and the current reliability is cheap to 

compute after each developmental step. Of these characteristics, the first and last 

were contemplated when the model was constructed. The mathematical properties 

were fortuitous. 

The case where the testing response is not binary is not considered here, though 

it is certainly worthy of further study. Huang [12] began to examine this problem 

under the assumption that the test response was a continuous variable. 

The expense of calculating VN{S) for more than two states appears, initially, to 

quickly grow astronomical. To see this, note that modeling a development process 

when the reliability may reside in more than two states requires another component 

of "5" for each additional state. For example: to model a process with three possible 

reliability states we could let Si and S2 give the probabilities that the design reliability 
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was in state 1 or 2, respectively, and then (1 — si — 52) would give the probability that 

this reliability currently resided in state 3. Ignoring the details of how the reliability 

r(5) is updated, the recursion would require 6 test update functions (three states 

with two possible outcomes each) versus the current 2 (the T/S) and, depending on 

one's approach, at least 3 design update functions versus the present 1 (6). Under 

the kind of analysis introduced in the previous section, Vn would have the form 

K.W = 

nr(5), 

''(£)[K-I('7IO(-SI)) + 14_I(7;2O('S2)) + K,-I('/3O('S3))] 

max < 4.(1 _ r(£))[K-i('7ii(si)) + K-i('721(32)) + K-i(»73i(s3))], '' 

5I[F„_,(^X2(3I)) + Fn-d(M52))] 

+'S2K-<i(^23(s2)) 

where the 77,j compute the state updates when in state i and test response j is 

observed while the 6ij give the probabilities the state moves from i to j. (Since we 

are not going to pursue this vein of computation, this kind of admittedly unpleasant 

notation will be of no further consequence.) 

Continuing, four reliabihty states would require three s dimensions, 8 jys and 

at least 6 6s. It seems that as the number of states grows the accompanying com­

putational expense and complexity quickly grows beyond the realm of what can be 

handled. 

To circumvent this vexing intractability, we propose a model which, ultimately 

requires only two variables to describe the A:-state reliability growth problem. 
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4.2 Multiple-State Reliability Models 

4.2.1 A General Multiple-State Model 

A general model for the multiple-state reliability problem can be given as follows. 

Suppose the design reliability can be in one of k states. Let p = {pi,p2, • • • ,Pk) give 

the  f a i l u r e  p robab i l i t i e s  so  t ha t  p , -  =  Pr (dev ice  f a i l u r e  when  i n  s t a t e  i ) .  Le t  s  =  

(si,s25• • • jSfc) >0 contain the probabilities that the design currently has reliability 

in state i. As before, the development process consists of a sequence of decisions, at 

each step choosing from "redesign," or "test," until finally "build" is chosen. After a 

successful test, s is updated as 

+ _ S j q i  
~ k ' 

i=i 

where q  =  ̂  —  p .  If the test produces a failure, the update is 

5 + =  
k  

j=i 

A redesign changes each element of 5 according to 

k  

i=i 

where H  =  i s a k x k  matrix of redesign functions appropriate for the problem. 

The overall reliability at each step is given by 

k  

Kf) = E^i9i-
j=i 

To analyze a particular design development process using this model, we would 

proceed as discussed in Section 4.1. We have claimed to be able to do better than 

this and now, we show how to do so. 
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4.2.2 An Intrinsically Two-Variable Multiple-State Model 

In Chapter 3 we described a design with 2 reliability states and s„ gave the 

probability of "good" reliability after a development process (tests and redesigns) 

costing n units. We now present a specialized version of the model presented in 

Section 4.2.1 which has a convenient transition structure. This new model will model 

reliability growth when the design can be in any one of k reliability states. While 

the model requires at least {2k — 1) parameters, it requires only two variables to 

describe the evolution of the development process — one that may be thought of as 

the total cost of the development process to date and another that may be thought 

of as representing the portion of this expense which increases device reliability (the 

diiference of these two giving a measure of the cost for unsuccessful attempts to 

increase reliability). 

Beginning with usual problem elements — an initial budget of N systems, test 

cost of 1 system, redesign expense of d systems, and current total development cost 

of n systems — we proceed as follows. 

For i = 1,2,..., A:, let pi = Pr(system failure | state i), and for definiteness, 

1 > Pi > P2 > • • • > Pit > 0. Let 0 < a,- (positive weights) and, as usual, 9,= 1 — p,-. 

In this discussion, we assume that the give the initial probability distribution of 

the design reliability. In this regard, the requirement that a be strictly positive is 

essential. If any a,- = 0, then state i is effectively removed from the model. This is 

because if a; is zero, then s; in (4.1) (below) is too. 

Given a development process state vector (X, F), X and Y real numbers, we 
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assume that the probability that the design reliability is in state i is 

(4.1) 

The design reliability at this point is given by 

k  
r ( X , Y )  =  

(4.2) 

which is the probability the design reliability resides in state i times the success rate 

in state i. As before, our goal is to determine n*, the development cost, so that 

the final mean number of effective systems, is as large as possible. 

The vector { X ,  Y )  contains the information necessary to compute the probability 

that the device reliability is in state k at each step in the development process. Thus, 

we can consider this vector to be the "development state." From state (X, F), a test 

moves one to (X + 1, F) with probability r{X,Y) (success) otherwise, to {X,Y + 1) 

with probability 1 — r{X,Y). When a redesign is completed, the state becomes 

{X + ho{X,Y), Y + fei(X,y)). And, unlike the situation in the binary model of 

Chapter 3, a redesign may now increase, decrease, or leave the reliability unaffected by 

appropriate choice of functions ho and hi. Figure 4.1 gives a graphical representation 

of the potential state changes. 

(4.3) 
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i X , Y )  

Succeed + 

Redesign 

Figure 4.1: Development state changes in a two-variable, 
multiple-state reliability model 

4.3 The Functional Equation For Optimal Developmental Testing in the 

Two-Variable Multiple-State Reliability Model 

In Section 3.2 we produced functional equation (3.3) by considering the effect of 

each developmental activity upon the current budget. Using exactly the same kind of 

reasoning, given goal (4.3) and the updating on (X, Y) after a developmental action 

summarized in Figure 4.1, the dynamic programming equation becomes 

V„(X,y) = max 

nr(X,y), 

r{ X , Y ) V n - i { X  +  l , Y )  +  (1 -r(X,y))K_a(X,y 4-1), , 

V , , . 4 X  +  h o i X ,  Y ) ,  Y  +  h { X ,  Y ) )  

(4.4) 

where V \ { X ^ Y )  —  r { X , Y ) ,  is computed using (4.2). 
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4.4 The Binary Model of Chapter 3 as a Special Case of the 

Two-Variable Multiple-State Model 

In light of the effort expended in Chapter 3, our first goal is to understand how 

that model might be realized in this new environment. 

In the two-state model of Chapter 3, the p,- axe the failure probabilities in state 

i and Sj is the posterior probability of being in state 2 after a j-step development 

program. During the development period (the sequence of redesigns and tests before 

building is recommended), the probability of residing in state 2 is updated according 

to (3.1) if step J + 1 is a test and via (3.2) if this action is a redesign. 

To demonstrate that the model of Chapter 3 is a special case of the model given 

in Section 4.2.2, we need to show that Si{X,Y) in (4.1) is equivalent to (3.1) and 

(3.2) after testing and redesign, respectively, and that the same value of s is given 

after each step. 

To reproduce the Chapter 3 model in the terms of Section 4.2.2, choose the same 

Pi and let (Xo, lo) = (0,0). We will discuss u, the probability of a successful redesign, 

below. Using (4.1), the initial probability of being in state 2, the "good" state, is 

+ 02 

which corresponds to sq of Chapter 3, the initial probability that the design has good 

reliability. Corresponding to (1 — so) we have 

si(0,0) = 1 - 5 2 (0,0)= 
fli 02 

For convenience, suppress the subscripts and use s ( X , V )  and 1 — 3(u^,y). 

First we show that in terms of Section 4.2.2, relationship (2.2) holds. Equation 



www.manaraa.com

49 

(4.2) says 

( Y V \  -
- a.qM + a^qM 

=  q ^ { l - s { X , Y ) )  +  q 2 s { X , Y ) ,  

using (4.1). But this is exactly relationship (2.2). 

To demonstrate that the conditional probabilities after testing are equal, start 

by supposing that the first step is a test. If it is a success, then 

^(1.0) = 
ai9i + 0292 

which is r]o{s) from (3.1), and if a failure, then 

o/n n — Q2P2 
(®' J I ' 

aiPi + a2P2 

which is 7/i(s) from (3.1). Continuing by induction, the update on s(X{, K) after a 

test is 

5(A'i, Yi)qi, if the test produces a success 

s{Xi, Yi)pi, if the test produces a failure 

q i { l - s { X i , Y i ) )  +  q 2 3 { X i , Y i )  

P2s{Xi,Yi) ' 

i>i(i-3(;t.-,ri))+M^i,K) 

which is 77x(5t) from (3.1) and the correspondence through testing is demonstrated. 

Next we need to show how 5(s) from (3.2) can be incorporated into the update 

of s{X, Y) after a redesign. We have 

X + h o { X , Y )  Y + h i ( X , Y )  
„/• V — ^292 P2 

)  —  X + h o ( X , Y ) Y + h i { X , y  
Oi9i )pY+h,(X,Y) ̂  a 2 q^+'^^'''y)pY+H^iX,Y) 
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following a redesign. Let h i { - )  = 0. We wish to determine the form of h o { - )  so that 

the redesign update on s(A', Y) (see (3.2) on page 10) satisfies 

where a = 01/02, q = qi/q2i P = VxlVii ^ is the probability of a successful 

redesign used in ^(5) from (3.2) on page 10 . 

In the formulation of Section 4.2.2, we have included two design functions, Ao(-) 

and fti(-), to allow the redesign portion of the developmental testing model to be as 

general as possible (under the assumption that each response is "success" or "fail­

ure"). The purpose of these functions is to compute the impact of a redesign on the 

vector {X,Y). In Section 4.4, we set h\{X,Y) = 0 and derived a redesign function 

hQ{X, Y) so that (4.4) and (3.3) were equivalent models. That is, for the model of 

Chapter 3, there is no need for two redesign functions. This demonstration raises 

at least two issues: 1) Does the model need two redesign functions? and 2) What 

types of redesign functions are reasonable? Considering the first of these questions, 

we proceed to show that the answer is "iVo, when k = 2, but Yes, for k > 2." 

6 { s )  = u -f 5(1 — u )  =  X+KO(X,Y) Y I X+fto(jr,y) Y' 
ai9i Pi+a2g2 P2 

Solving for h o { - ) ,  we have 

4.5 Choice of Design Functions 

Lemma 4.1 When k = 

(4.1) - (44)-

2, then one redesign function suffices in the reliability model 
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Proof. Let k = 2. Recall that equation (4.1) gives the probability that the 

reliability resides in state i when the development state is (X,Y). Suppose that 

there exists a function h{X, Y) such that 

S i{ X  +  h { X ,  Y ) ,  Y )  = S i{ X  + K { X ,  r), Y  +  h r { X ,  y)). 

The form of h { X ,  Y )  can be determined by solving 

s r { X V h { X , Y ) , Y )  ̂  s ^ { X  +  h ^ { X , Y ) , Y  +  h r { X , Y ) )  
S 2 { X  +  h { X ,  Y ) ,  Y )  S 2 { X  +  h o { X ,  Y ) ,  Y  +  h ^ { X ,  F ) )  

for l i { X , Y ) .  Again let q  = gi/92 and p = pi/pa, substitute (4.1) into (4.5), and 

simplify to obtain 

qX+hpY _ ^x+ho 

which yields 

h { X , Y )  =  / t o ( X , r )  +  / i i ( X , F ) ^ | ^ j  

= + (4.6) 

That h is the unique solution to (4.5) when fc = 2 follows from the fact that 

ln(l/x) = — In®. • 

Lemma 4.2 If k > 2 and ho{X,Y) ^ 0 and hi(^X,Y) ^ 0, then it is not possible to 

reduce a 2 redesign function model to a single redesign function model. 

Proof. Since the p,- are imique by definition, when A: > 2 the ratio si/sk wiU not 

give the function h obtained in (4.6). • 
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chapter 5. numerical solutions of the 

two-variable multiple-state problem 

Computing solutions to (4.4) using (4.1) and (4.2) is a much larger and harder 

problem than computing solutions to (3.3). Even if linear interpolation were to be 

used to compute solutions to (4.4) in a fashion analogous to the method used to 

compute solutions to (3.3), there are further difficulties. We don't know a priori 

what the range on X and Y is going to be. Of course, even without this issue, 

straight-away computation of (4.4) is more expensive than computing (3.3) since we 

must compute across a portion of the Xy-plane, rather than just an interval. 

The efforts described here are a first step to compute (4.4). The need for further 

research wiU be discussed later. 

5.1 Computing K(^, 5^) 

The definition (4.4) can of course be used to compute Vn and identify optimal 

policies, but only for very small values of n (n < 30). Because of the recursion, the 

size of the calculation grows so rapidly that other methods must be developed to 

compute the optimal plan for larger budget n. We have developed two methods. The 

first, given appropriate assumptions, will compute Vn across a lattice, and the second 

is a myopic heuristic similar to one used by Huang [12]. 
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5.1.1 Computing K on a Lattice 

Suppose we have the usual set of problem parameters: aa initial budget of N 

devices, fc-vectors a and p, and initial state (Xo, lo)- We can compute VN{X, Y) when 

hi{X,Y) = 0, feoC-X'jy) is a fixed positive integer and d, the design cost, is equal to 

p / q ,  f o r  p o s i t i v e  i n t e g e r s  p  a n d  q .  

The calculation proceeds as follows. Given initial state (Xo, Yo) and budget N, 

the development process can spend at most N — 1 devices. One can compute back 

from Vjv(^o>^) to Vi(X,y) and form a lattice of all possible states (-X^, V) which 

w i l l  b e  n e e d e d .  A t  e a c h  s t a g e  m  ( m  >  q ) ,  t h e  n u m b e r  o f  p o s s i b l e  r e d e s i g n s  ( s a y  j )  

and tests (t) must satisfy the three equations: 

Equation (5.1) says that the amormt of the budget spent, Nq — m, will equal 

a mix of tests and redesigns. Equation (5.2) relates the steps of the development 

process to the set of possible states. Relation (5.3) is included to maJce it clear that 

any design activity will be reflected in X. 

An example will make this clear. Suppose that N = 4, d = 3/2, and {Xo,Yo) 

and positive integer ho, are all given. The lattice tables for this problem axe given in 

Table 5.1 (each sub-budget m has its own table, we've put all the tables into one for 

convenience). We compute K. for m from 2 to 8. The last rows (m = 2) of Table 5.1 

are computed using (4.2) and ascending rows are then computed using the values 

contained in the lower ones, as needed, by using (4.4) on page 47. 

tq + jp = Nq — m, 

t + jho = X + Y-{Xo + Yo), 

X  >  X o + j h o .  

(5.1) 

(5.2) 

(5.3) 
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Table 5.1: Lattice points needed to compute V4{XQ ,  YQ) when d = 3/2. The stage, 
m, is the number of budget pieces left, n is the number of devices 
remaining. The number of tests emd designs required to be at stage 
m are given by T and D, respectively. 

m  n  T  D  Possible States 

8 4 0 0 (j^o,yo) 
7 111 0 0 none 
6 3 1 0 (Xo + i,ro), (Xo,yo + i) 
5 5/2 0 1 (Xo + /io,ro) 
4 2 2 0 ( X o  + 2, Y o ) ,  (Xo + 1, Ko -H 1), { X o ,  Y o  +  2) 
3 3/2 1 1 (•X^o + /lo + Ij io) 5 (-X^D ho, lo + 1) 

2 1 
3 0 (J^O + 3,Y o ) ,  { X o  +  2 , Y o  +  1), iXo + l,Yo + 2), {Xo,Yo + 3) 2 1 
0 2 (Xo + 2/jo,i^)) 

Computing solutions to a fe-state reliability problem using (4.4) is possible only 

for small budget n; the computation grows exponentially like 3". For fixed d and ho, 

the time to compute Vn{X,Y) with the lattice technique grows polynomially. (The 

total number of lattice points grows like n^.) Using the DEC Alpha workstation, we 

would say that the lattice technique is useful for n less than 200. (Depending on 

the problem parameters, it caji take more hours to compute a single value of a T4oo-

For example, it took approximately 70 hours to compute a single point of a 4-state 

V5oo(0,0) with d= ho = 2on& Silicon Graphics Indy workstation (100 MHz, 32 Meg 

RAM, a slightly faster computer than the DEC Alpha mentioned earlier).) 

A pseudo-code computer program to compute Vn{X,Y)  subject to the restric­

tions discussed in this section is given in Appendix.3. 

Solutions to laige problems can always be quickly approximated, and in some 

cases, given exactly, using the look ahead methods of the next section. 
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5.1.2 Look Ahead Rules 

We now examine two suboptimal stopping rules which result from the "myopic" 

or look ahead principle discussed in [12] and [13]. That is, for purposes of making 

the current decision, we will temporarily entertain further development costs of at 

most j "steps" (to be defined below) and subject to this constraint, initially proceed 

optimally with testing and redesigns. 

Suppose we measure "steps" as the number of devices "spent" or used in testing 

and redesign. Let {X, Y) represent the maximum expected number of eiFective 

systems resulting from an n system program, given developmental state {X, Y), when 

development costs of at most j will be allowed. As with Vn{X, y), and arrived at by 

entirely the same reasoning (with the additional stipulation that the process stops in 

j steps), there is a recursive functional equation for W^, 

W4(X,y) = max 

n r { X , Y ) ,  

T(X, Y)WT\(X + I, y) + (1 - r( X ,  Y ) ) W T \ I , X ,  Y  + 1), 

WC4(X + I,O(X,Y),Y + II,(X,Y ) ) ,  i > d  

(5.4) 

where W ^ { X , Y )  =  n r ( X , Y )  and W ; ( X , Y )  =  V 4 X , Y ) ,  as given in [13]. 

If, on the other hand, we measure "steps" as the number of developmental deci­

sions made, and not the number of devices spent, we get (5.4) with one change; the 

third term changes from W^Zi(-) to become W^Zd(-)-

For convenience, we will refer to the look ahead rules as "Device" and "Step" 

rules. Equation (5.4) is the "Device" rule and by the "Step" rule we mean replacing 

the third term of (5.4) with W'^Zd(-)-

Using a j-step look ahead rule, one stops the developmental phase at the first i 
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for which 

5.2 Numerical Examples and Comparison of Methods 

To understand how different parameter values affect the model, we computed 

the values of (4.4) and (5.4) (for both Device and Step look aheads) on a small set 

of problems. 

Given initial budget N, and redesign cost d, completely parameterizing a prob­

lem requires that one must give values for: k, the number of states the problem is 

to have; a, the initial probability distribution of the initial reliability; p, the failure 

probabilities for each state; ho, the redesign value; and (Xojio)? the initial develop­

ment state. The values of these parameters used to compute the V and W given in 

Table 5.3 axe given in Table 5.2. 

For the two different values of k, the p (we refer to them as pk, not to be confused 

with the subscripts on the a,- s) vectors have the same "best" and "worst" failure 

probabilities. The ci vector gives a uniform distribution of initial reliability states. 

That is, the design reliability is equally likely to be in any one of the k states. The 

vector £2 gives a distribution which is weighted so that the probability the reliability 

is initially very good is "high," while 03 was chosen to make this probability "poor." 

Later, we will present the results of some calculations made with non-integer d. 

The Vn values were computed using (4.4), "S„," and "D„" axe the number of 

look ahead steps needed to compute Vn from the Step and Device look ahead rules 

of equation (5.4), respectively. Some simple observations may be made. 

As one would expect, the value of V decreases when the initial probability of 
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Table 5.2: Values of Parameters Used in fc-State Calculations, 
I n t e g e r  d  

Parameter Values 

n 100, 200 
d  1, 2, 3, 4, 5 
h o  5 

{Xo,Yo) (0,0) 

k  4 10 

P (.99, .30, .09, .01) (.99, .8, .7, .6, .5, .35, .2, .05, .01) 
ai (1,1,1,1) (1,1,1,1,1,1,1,1,1,1) 
0-2 (1,9,25,49) (1,9,25,..., 172,192) 
03 (49,25,9,1) (19M72,...,9,1) 

having reliability in state k  (the "best" state, that of highest reliability) is low. This 

value decreases as the cost of a redesign rises. Given cost d and the "same" a,-, each 4-

state V is larger than the 10-state V, but not by any appreciable amount. The mean 

failure probability given £4 is 0.3475, while with this mean failure probability is 

0.42, making it slightly easier to achieve better reliability in the 4-state versus the 

10-state model. 

Turning now to the look ahead data. In all but two cases the number of Device 

look aheads is equal to the number of Step look aheads multiplied by the redesign 

cost, d. The two exceptions occur when fc = 4, the "a" value is 02, d = 4 or 5, and 

n = 100 (Vioo). Why? We suspect this means that the optimal policy is "redesign" 

and then "test," in both cases. 

This demonstrates the utility of both rules used together — in some simple cases, 

the optimal strategy can be deduced. If one was to pick a single rule, and this seems 

unlikely, then it is premature to conclude that the Step rule is to be preferred over 
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Table 5.3: Example of fc-State Reliability, Integer d, 
n = 100 and 200 

k a d Vioo Sioo Dioo V200 S200 D200 

1 94.21 3 3 191.54 4 4 
2 92.18 2 4 188.41 3 6 

ai 3 90.54 1 3 186.29 2 6 
4 89.61 1 4 184.37 2 4 
5 88.67 1 5 182.44 2 10 
1 95.48 2 2 193.00 3 3 
2 94.43 1 2 190.96 2 4 

4 02 3 93.46 1 3 189.81 1 3 
4 92.63 2 5 188.85 1 4 
5 92.57 2 6 187.89 1 5 
1 90.03 4 4 186.51 9 9 
2 86.84 3 6 180.06 5 10 

03 3 84.14 2 6 176.46 3 9 
4 82.35 2 8 173.69 3 12 
5 80.56 2 10 170.91 3 15 
1 94.19 3 3 191.30 4 4 
2 92.12 2 4 188.38 3 6 

fli 3 90.20 2 6 186.15 2 6 
4 88.28 2 8 184.23 4 8 
5 87.35 1 5 182.32 2 10 
1 94.72 2 2 192.00 3 3 
2 92.79 2 4 189.44 2 4 

10 0-2 3 91.35 1 3 187.51 2 6 
4 90.41 1 4 185.57 2 8 
5 89.47 1 5 183.65 1 5 
1 90.91 4 4 186.22 5 5 
2 87.39 3 6 181.82 4 8 

az 3 84.60 3 9 178.03 4 12 
4 81.81 3 12 174.78 3 12 
5 79.88 2 10 171.99 3 15 



www.manaraa.com

59 

its Device counterpart. Because the calculations are recursive, they can be finished 

in reasonable time only for a small number of look ahead steps (on our equipment, 

j < 15 or 16). For a fixed number of look ahead steps, when d > 1, the recursive 

calculation for the Device look ahead rule will not look as far ahead in the optimal 

strategy as the Step rule. 

Recognizing when a look aiiead rule has returned the optimal value of V is 

another issue entirely. For example, earlier we alluded to the fact that it took about 70 

hours, using the lattice method of (5.1)-(5.3), to compute l^oo(0,0), for a particular 

instance of a 4-state problem. The Step rule gives this value, on the same equipment, 

in under one second, requiring a look ahead of 6 steps, and the Device rule gives it 

in 12 steps, taking under 10 seconds. Had we not known the value of V500, how we 

would we deduce the optimal value, given a sequence of look ahead values? In many 

cases, simply put: we couldn't. Since the problem complexity grows exponentially 

as a function of the budget, n, the naive approach of, "computing a few more look 

ahead steps" is, as we've pointed out repeatedly, not an option. 

To demonstrate the symmetric role that the two look aJiead rules can play, we 

look at another set of calculations, these performed with non-integer design costs. 

The parameter values used to compute Table 5.5 are given in Table 5.4. 

As was hinted earlier, for d < 1, the Device rule computes the optimal value, 

with fewer look aheads than the Step rule. Again, this time with three exceptions 

(the entries in rows 4, 6, and 8 of Table 5.5), the depth the Device rule has to look 

to compute the optimal value is equal to number of Step look aheads multiplied by 

d. All our previous comments, with respect to how the fimction values change with 

the parameters, still hold. Two additional observations can be made. As expected. 
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Table 5.4: Values of Pcurameters 
Used in fe-State Cal­
culations, 
Non-Integer d 

Parameter Values 

k 4 
n 100 
d 1/2, 3/4, 3/2, 5/2 
ho 2, 5 
a Oi, ^ 

P (.99, .30, .09, .01) 

{Xo,Yo) (0,0) 

Table 5.5: Example of fc-State Re­
liability, Non-Integer <?, 
n = 100 

a ho d ^00 Sioo Dioo 

1/2 95.16 4 2 

2 
3/4 94.19 4 3 
3/2 93.11 2 3 

Si 
5/2 92.48 3 6 

Si 1/2 96.46 2 1 

5 3/4 95.48 2 2 
3/2 94.51 2 3 
5/2 93.46 1 3 
1/2 89.09 10 5 

2 3/4 87.17 8 6 
3/2 82.77 6 9 
5/2 78.78 4 10 
1/2 93.22 8 4 

5 3/4 91.28 8 6 
3/2 88.15 4 6 
5/2 85.04 2 5 
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given two values of ho, the lajger value gives a greater yield, V, and consequently, a 

shorter development process than is required by the smaller ho value. In some cases 

the cheaper designs made no difference. By comparing rows 6 and 8 of Table 5.3 to 

the same rows in Table 5.5, we see that, in some cases, the cheaper designs do not 

increase the V value. When we compare rows 11-15 of Table 5.3 to rows 13-16 of 

Table 5.5, we see that the less expensive designs can have an effect on the value of V. 

In this example, the vector 03 gives poor initial probability of good design reliability. 
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CHAPTER 6. CONCLUSIONS 

6.1 Conclusions 

We have extended the analysis of the optimal development of one-shot systems 

when reliability growth is possible due to system redesign. Huang posed four ques­

tions in her Ph.D. thesis and we have answered three of them here. Naturally however, 

in doing so, we have raised more new questions than we were able to answer. 

We have improved the best existing binary model by incorporating design costs 

and we have proposed a new multiple-state model. 

Incorporating design costs into the Huang 2-state model is in itself important, 

but this change improves the model in some additional ways: 

1. The stipulation that redesigns can only occur following a failed test is removed. 

2. Repeated redesigns are allowed. This is a mixed change. 

• There are no restrictions on the course of action the development program 

should follow. 

• The sequence of redesigns may not allow for a testing period. In general, 

performing redesigns and not verifying their outcome may be unreason­

able. 
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3. Reliability growth does not occur through repeated testing. Testing only pro­

vides information on the current reliability state. 

4. The reliability changes in accordance to the success/failure of the most recent 

test. 

5. The value function, is now monotone increasing. 

6. Regressive designs can be included in this model in a straightforward way. 

7. The redesigns can be used to predict compliance with extremely high reliability 

specifications. 

For the most part, the model gives developmental procedures which progress as 

one would intuitively expect: redesign if the estimated reliability is very low, test 

if the current reliability state is unclear, and build when the reliability estimate is 

satisfactorily high. But there are parameter mixes where the behavior is strange, 

unexplained ... chaotic. 

The proposed model for the analysis of multiple-state reliability growth has a 

form which is intrinsically a 2-vaxiable model and this model contains the original 

binary model of Chapter 3. Realizing the original 2-state model is an instance of the 

A:-state model is an exercise which makes an important point — much work is needed 

to develop appropriate/realistic redesign functions. 

We show how to solve for optimal strategies in the new model, given some 

restrictions, on a lattice. Finally, we show how to apply more easily computed but 

suboptimal "look aiead" heuristics, of which there axe two types: we can look ahead 

according to the development budget we will entertain, or according to how mcmy 
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further developmental decisions will be allowed. We make comparisons, in a nimiber 

of cases, between the two types of myopic rules. 

6.2 Further Research 

The following topics and questions need additional study: 

1. Can mathematical models provide any further guidance in the development of 

extremely high reliability devices? 

2. Models in which u, the probability of a successful redesign, is a function of the 

development history axe needed. Does a model in which « is a fimction of the 

redesign cost contribute any further insight? Can the redesign vary according 

to the previous test results? 

3. Is it unreasonable to allow repeated, consecutive redesigns? 

4. What are the distributions of r(5*) and r{X, Y)? 

5. Functions to approximate the 5*, the cut-off values are needed. Attempts to 

characterize the optimal developmental plan are still inconclusive. Given the 

chaotic behavior of some problems, this seems likely to remain the case. Along 

this line of inquiry, is there a way by which the policies dictated by a problem's 

parameters can be recognized? For example, is there a way to recognize the "no 

test" problems we saw when studying the extremely high reliability problems 

in Section 3.3.5? 

6. The multiple-state models need realistic redesign functions. 
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7. What role, other than serving as initial probability state vector, can the weights 

a of the multiple-state model serve? 

8. Further work modeling non-binary test responses is needed. 

9. Develop other goals, in comparison to (2.1) and (4.3), which are useful for 

studying these problems. Given other goals, what techniques are required to 

compute solutions? 

10. Develop more complete, and hopefully, faster methods by which to compute 

Vn{X^Y). Does the model have properties, similar to those possessed by the 

original binary model, that can be exploited to speed up the computation of 

solutions? 
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APPENDIX PSEUDO-CODE 

The author will be happy to supply interested persons the source code used to 

create the numerical examples in this dissertation. 

The following conventions are used in the descriptions which follow: 

- Variables and axrays are printed in italic. 

- Array indices are indicated individually in square brackets so that, for example, 

in an n X m array (matrix) A, the element A{i,j) (row, column) is written as 

>l[i][7]. We exploit (abuse?) this property in Appendix.2 below. Finally, note 

that array indices start at 0. 

- The names of procedures are written in SMALL CAPITAL LETTERS 

.1 Computing Vn{s) 

The following is a pseudo-code description of the program used to compute Ki(s). 

1. Initialization 

(a) Input 

1. K = nimiber of grid points s for which K(s) will be computed 

ii. Problem parameters = {•/V,2?i,P2}u,d = p/q} 
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(b) Storage 

i. probmod = max{p, 9} + 1 

ii. Establish probmod arrays u, each having size K + 2 

iii. Establish 1 action array of size K + 1 

2. Computation 

(a) Compute Vi: 

i. For j = 0] j < K; increment j by 1 

Compute: u[0][7] = r{j/K) 

ii. i;[0][i(r + 1] = v[0][^] 

iii. intbudget = 1 

(b) Compute to V^q 

i. For i = 1; z < (iV — 1)^; increment i by 1 

A. itest = {i — q) mod probmod 

B. idesign = {i —p) mod probmod 

C. inow = i mod probmod 

D. K inow = 0, then increment intbudget by 1 

E. For j = 0; j < K- increment j by 1 

v\inow\\i\ = 'VALlJE(intbudget,itest,idesign,j) 

F. v[inow][K + 1] = v[inow][K] 

ii. Procedure; WAL\5E{b,t,dg,j) 

A. Compute r{s), 7/0(5), 7/1(5),  and 5(s) using (2.2), (3.1), and (3.2), 

respectively, where s = j/K 
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B. build = b • r(s) 

C. If i > 0, test = r(s)lNTERP(t,J7o(s)) + (1 - r(s))lNTERP(<, 771(5)); 

else, test = 0 

D. If dg > 0, design = lNTERP(<i5', ^(s)); 

else, design = 0 

E. value = m.dx.{huild^test,design} 

F. acti<m\ji\ = "Build," "Test," or "Redesign," as appropriate, de­

pending on which term gave value in previous step 

iii. Procedure: INTERP(index,p<) 

(Note: [a;J = Integer part of a: ) 

A. up = K ••pt— \K • ptj 

B. down = \ — up 

C. Return: {{down • v[index][[K • pfj]) -1- {up • v[index]{K • pt 1])) 

Output 

(a) wantv = {N — 1) mod probmod 

(b) Print v[t(;anii;][0], arfion[0] 

(c) build.flag = 0 

(d) While build.flag = 0 

i. For j = I', j < K] increment j by 1 

If v{wantv\\j — 1] 7^ v\wantv]\j\ 

Print v[wantv]\j], ad,ion\j] 
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ii. If action[j] — "Build" 

build, flag = 1 

4. Do another problem or exit program 

As mentioned in Section 3.3.2, this program can be modified to compute V when 

tests cost t devices. We assume the test and design costs axe input in three integers: 

{pt,pd, where the variable names are as given in Section 3.3.2. Now V is computed 

by changing the indices in point 2(b)i., above, as follows. 

A. probmod = max{pt,pd} + 1 

B. itest = (i — q — Pt) mod probmod 

C. idesign = (i — q — pj) mod probmod 

D. inow = {i — q) mod probmod 

The value of Vjv(s) will be in v\wantv\, where wantv = (N — 1)$ mod probmod 

(in Section 3 above. Output). 

.2 Simulated Optimal Development Process 

The simulation program was written in the C programming language and the 

simulations were nm on a Silicon Graphics Indy workstation (100 MHz, 32 Meg 

RAM). When a test is performed a random number is drawn. The nimiber is com­

pared to r(s) (the current design reliability) and, if the random number is less than 
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r(s), the test is determined to be successful while otherwise the test is deemed a 

failure. 

The C library function randomQ was used to produce the random numbers used 

in the "test" part of these simulations. The function randomQ was seeded from 

the computer system clock by a call to the C library function srandomQ. Interested 

readers may consult Kernighan and Ritchie [14] as well as the Unix system man pages 

for more specific implementation details. 

On the SGI Indy, the function randomQ uses a non-linear additive feedback 

random number generator to return pseudo-random numbers in the range from 0 to 

231 _ 1 -pjjg period of this random number generator is approximately 16(2^^ — 1) 

(approximately 34 billion cycles). In an attempt to check the randomness of the 

function randomQ, we used it to produce a number of sequences of length 5,000 

and 10,000. For each sequence generated, we examined a histogram of the (pseudo-

) random set of numbers, a point plot of the successive pairs of the numbers in 

the sequence (plot (X,-,X,_i), where Xi = ith number drawn), and performed a Chi-

square test (for a uniform distribution of the nimibers in the sequence over their range) 

as discussed in Knuth [15], pages 39-45. All these (admittedly simple) tests indicate 

that randomQ is a satisfactory random number generator on the Indy platform. 

The following is a pseudo-code description of the program written to simulate 

the optimal development process discussed in Section 3.3.3.1. 

1. Initialization 

(a) Input 

i. K = number of grid points s for which Vn{s) will be computed 
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ii. SIM.RUNS = number of times development process will be simu­

lated with current set of problem parameters 

iii. Problem parameters = {N,pi,p2,u,d = p/q} 

iv. So = Probability initial design is in state 2 

(b) Storage 

i. probmod = max{p, ?} + 1 

ii. Establish probmod arrays v, each having size K + 2 

iii. Establish 1 action array of size if + 1 

iv. vrecord = array of {(N—l)q+l) records with each record, potentially, 

of varying length. For z = 0 to Nq, and for j = 0 to / (/ may vaxy with 

each subproblem),  vrecord[i \ \ j]  will  contain Sj ,  and action [s j ] ,  

where Sj is the jth (developmental) action change in Vi. We will 

denote the specific element of record j by vrecord\{\\j\\element\, where 

element € {sj, K(si)j ad,ion\sjW. (In context, it is not a problem to 

keep the initial input value so separate.) 

For each Ki, compute and store the following information: Sj, the jth action 

change point ;  as well  as  VIi(sj)  and action [s j ]  

(a) Use the program from Appendix.l to compute Vy to Vsq', but now, imme­

diately after computing each v[inow\\j\, do the following ... 

(b) When computing Vi, store urecorrf[0][0] = 0,0, "Build" 

(c) For Vi+i/g to Vjvg (i-e., For i = 1; i < (iV — l)g; increment i by 1) 

i. Store: vrecor<i[i][0] = 0,u[i][0],acfion[0] 
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ii. For i > 0; j < iif; increment j by 1 

If actionU — 1] action\j], then 

A. Check: is there storage space for additional vTecord[i\\l\i 

If not, allocate additional storage 

B. Store: z;recor<i[i][/] = 5j,t;[i][;],acfion[j] 

(Note: we've just finished computings [i][;] and at this point 

a developmental activity change has occurred. This activity 

change corresponds to the /th change in the developmental 

action.) 

Simulate Development Process 

(a) Seed random number generator 

(b) If vrec(yrd[Nq\[si^{action] ^ "Build" 

i. For i = 1; i < SIM.RUNS] increment i by 1 

dosim(so, Nq, vrecord[N q\\s^[ad,ion^ 

ii. Report statistics of SIM.RUNS developmental processes 

iii. Procedure: D0SIM(5, n,arf) 

A. Case act = "Build" 

• Update development statistics 

• Do next simulation run 

B. Case act = "Test" 

• n = n — q 

• s = TEST(5) 
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• Update test statistics 

• Goto NEXT.BUDGET 

C. Case act = "Redesign" 

• n = n — p 

• s = 6(s) 

• Update redesign statistics 

• Goto NEXT.BUDGET 

D. Procedure: TEST(s) 

• outcome = RANDOM / (Maximum Random Number) 

• If outcome < r(5), return: r]o{s) (success); 

else, retiun: rji{s) (failure) 

E. Procedure: NEXT.BUDGET 

• act = vTec(yrd]Ti\[s] [ a (±ian\ 

• DOSIM(s, n, ACT) 

F. Procedure: RANDOM 

Function call to random number generator, discussed above 

4. Do simulation of another problem (new set of input parameters) or exit 

.3 Computing Vn{X,Y) on a Lattice 

The (recombinant) lattice program uses modular arithmetic in some storage 

arrays like the original K,(s) program (Appendix .1). The program computes the 
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value of Vm{X^ Y) for every possible state vector (X, F) when the budget is m, for 

m ranging from q to Nq. 

The following is a pseudo-code description of the lattice technique introduced in 

Section 5.1.1. The program was used to compute the values given in Tables 5.3 and 5.5. 

1. Initialization 

(a) Problem parameters = {N,p, a, (Xo, io), d = p/q, /io(integer)} 

(b) Storage 

i. probmod = max{p, ?} + 1 

ii. Establish arrays ... 

maxtest, maxdsgn, and maxposition 

to store the maximum number of tests, redesigns and number of com­

binations of tests and redesigns, respectively, realized for the last 

probmod subproblems 

iii. Establish array difference to track the size of the developmental 

budget for the last probmod subproblems 

iv. Establish probmod arrays v, each of length {Nq){Nq + l)/2 (More 

conservative memory usage is possible and in the program actually 

used, we allocated memory later, "on the fly," when we knew exactly 

the number of elements v[m] would possess.) 

2. Compute V/v(Xo,lo) 

(a) {X,Y) = (Xo,io), intbudget = 0 

(b) For m = q\m< Nq-, increment m by 1 
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i. currpos = {m — q) mod probmod 

ii. testpos = (m — 2q) mod probmod 

iii. dsgnpos = {m — p — q) mod probmod 

iv. difference{currpos\ = Nq — m 

V. maxtext[currpos] = difference[currpos]/q, 

the maximum number of tests possible 

vi. maxdsgn[currpos] = difference[currpos]/p, 

the maximum number of designs possible 

vii. If m mod 9 = 0, then intbudget is increased by 1 

viii. Determine the maximum nvimber of tests and designs which can be re­

alized with the current budget (m) and the mmiber of developmental 

states {X, F) possible 

A. pos = maxt = maxd = 0 

B. Using equations (5.1)-(5.3) of Section 5.1.1, page 53, look for in­

tegers t (j) in the range of 0 to maxtest{maxdsgn)[currpos] so 

that 

tq + j p = difference[currpos] (A.l) 

Do this as follows: 

For t = maxtest[currpos]', t > 0; decrement < by 1 

For j = 0] j < maxdsgn[currpos]', increment j by 1 

If {t,j) satisfy (A.l), then 

• pos = pos + < + 1 

a maxi = max{i, maxt} 
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• maxd = max{j, maxd} 

C. maxposition\currpos\ = pos — 1 

D. maxiest\currpos] — maxt 

E. maxd$gn\curTpos\ = maxd 

Now fill the state table for this budget - compute K„(X,Y) for all 

(X, F) possible with budget m 

For z = 0; i < maxpositi(m\curTpos\^ increment i by 1 

A. POSGIVEXY(currpos,i,X,y)  

B. rXY = x{X + Xo,Y + Yo) (Use (4.2) to compute rXY) 

C. build = intbudget • rXY 

D. If testpos > 0, then 

test = (rXy)i;[<esfpo5][XYGIVEPOS(fesipos,X + 1,F)] 

+(1 - rXY) ?;[tes<pos][XYGIVEPOS(<es<pos, X, Y + 1)]; 

else, test = 0 

E. If dsgnpos > 0, then 

design = v[ds5npo5][XYGIVEPOS(ci[s5npos, + 

else, design = 0 

F. i;[c«rrpo5][XYGIVEPOS(c«rrpo5, X, y)] = inax{build, test, design} 

Procedure POSGIVEXY(tW, index, x, y) 

This procedure will return the development state vector (X, Y) given 

some measure of the budget (tbl) currently under consideration, ta­

ble position (index) and maximum number of tests allowed for the 

current budget (maxtest[tbl]). Knowing these nimibers, POSGIVEXY 
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determines which table row index is contained in and thus (since hi 

is 0) the y of the vector (-X',!'). Knowing Y, a brute force search for 

the correct X values ensues. 

A. Determine Y (Knowing thl and index, we know how many ele­

ments axe in the current table and how many elements are in each 

row.) 

• a — q 

• b = 2{maxtest[tbl] + 1) + 3g 

• c = 2{maxtest[tbl\ + q + index + 1) 

• root = l(b — sqrt{li^ — 4ac))/2aJ 

root, the row which contains index, and the use of the 

quadratic formula to compute root, comes from counting 

how many items are in the current table and determining 

which row number index is contained in, since we want an 

integer row number we use [xj - keeping only the integer 

part. 

•  Y = index—NUM.B.4(roof,7naa:<esf[f6/]) 

B. Now determine X: 

• found = 0 

• While found = 0 

For j = maxtest[tbl\ — (root — 1) • p; j > 0; decrement j by 1 

For k = 0] k < maxdsgn[tbl\; increment A: by 1 

If jq + kp — dif ference[tbl\, then 
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nrowpos = j, krowpos = k, found = 1 

• X = nrowpos — y + {krowpos • ho) 

C. Return: {X,Y) 

xi. Procedure XYGIVEPOS(<W, x, y) 

This procedure is the "inverse" of POSGIVEXY. Given the current bud­

get {tbl) and the current developmental state it is relatively 

straight-forward (in comparison to POSGIVEXY) to determine the as­

sociated table position. XYGIVEPOS uses (5.1) and (5.2) to determine 

in which row of the current budget table (X, Y) resides. The position 

is then the total number of elements in the table before this row, plus 

y. 

A. detrmnt = {q • ho) — p 

B. If detrmnt = 0, return: Y 

C. {detrmnt ^ 0) 

• numherX = [((Ao • dif ference\thl\) — p{X -f- Y))ldetrmnt\ 

• For j = 0; J < maxtest\thli\\ increment j by 1 

If maxtest[tbl] — j • p = numherX, then rowX = j 4-1 

• Return; Y-\- ii\JlA.BA{rowX,maxtest[tbl\) 

xii. Procedure NUM.B.4(rot/;,ntes<) 

This procedure computes the number of elements in a table before 

row when the table has a maximum of ntest tests. 

Return: {{row — 1) • {2{ntest + H- p) — p • raw) 12) 
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3. Output 

(a) wantv = {N — l)q mod probmod 

(b) POSGIVEXY(u;antu,0, Xjy) 

(c) Print u[ii;an<u][XYGIVEPOS(t(;an<t;,X,y)] 

4. Do another problem or exit program 
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